Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcnvmptOLD Structured version   Visualization version   Unicode version

Theorem funcnvmptOLD 29467
Description: Condition for a function in maps-to notation to be single-rooted. (Contributed by Thierry Arnoux, 28-Feb-2017.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
funcnvmpt.0  |-  F/ x ph
funcnvmpt.1  |-  F/_ x A
funcnvmpt.2  |-  F/_ x F
funcnvmpt.3  |-  F  =  ( x  e.  A  |->  B )
funcnvmpt.4  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
Assertion
Ref Expression
funcnvmptOLD  |-  ( ph  ->  ( Fun  `' F  <->  A. y E* x ( x  e.  A  /\  y  =  B )
) )
Distinct variable groups:    x, y    y, F    ph, y
Allowed substitution hints:    ph( x)    A( x, y)    B( x, y)    F( x)    V( x, y)

Proof of Theorem funcnvmptOLD
StepHypRef Expression
1 relcnv 5503 . . . 4  |-  Rel  `' F
2 nfcv 2764 . . . . 5  |-  F/_ y `' F
3 funcnvmpt.2 . . . . . 6  |-  F/_ x F
43nfcnv 5301 . . . . 5  |-  F/_ x `' F
52, 4dffun6f 5902 . . . 4  |-  ( Fun  `' F  <->  ( Rel  `' F  /\  A. y E* x  y `' F x ) )
61, 5mpbiran 953 . . 3  |-  ( Fun  `' F  <->  A. y E* x  y `' F x )
7 vex 3203 . . . . . 6  |-  y  e. 
_V
8 vex 3203 . . . . . 6  |-  x  e. 
_V
97, 8brcnv 5305 . . . . 5  |-  ( y `' F x  <->  x F
y )
109mobii 2493 . . . 4  |-  ( E* x  y `' F x 
<->  E* x  x F y )
1110albii 1747 . . 3  |-  ( A. y E* x  y `' F x  <->  A. y E* x  x F
y )
126, 11bitri 264 . 2  |-  ( Fun  `' F  <->  A. y E* x  x F y )
13 nfv 1843 . . 3  |-  F/ y
ph
14 funcnvmpt.0 . . . 4  |-  F/ x ph
15 funmpt 5926 . . . . . . . . 9  |-  Fun  (
x  e.  A  |->  B )
16 funcnvmpt.3 . . . . . . . . . 10  |-  F  =  ( x  e.  A  |->  B )
1716funeqi 5909 . . . . . . . . 9  |-  ( Fun 
F  <->  Fun  ( x  e.  A  |->  B ) )
1815, 17mpbir 221 . . . . . . . 8  |-  Fun  F
19 funbrfv2b 6240 . . . . . . . 8  |-  ( Fun 
F  ->  ( x F y  <->  ( x  e.  dom  F  /\  ( F `  x )  =  y ) ) )
2018, 19ax-mp 5 . . . . . . 7  |-  ( x F y  <->  ( x  e.  dom  F  /\  ( F `  x )  =  y ) )
21 funcnvmpt.4 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
22 elex 3212 . . . . . . . . . . . . . 14  |-  ( B  e.  V  ->  B  e.  _V )
2321, 22syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  _V )
2423ex 450 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  A  ->  B  e.  _V )
)
2514, 24ralrimi 2957 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  A  B  e.  _V )
26 funcnvmpt.1 . . . . . . . . . . . 12  |-  F/_ x A
2726rabid2f 3119 . . . . . . . . . . 11  |-  ( A  =  { x  e.  A  |  B  e. 
_V }  <->  A. x  e.  A  B  e.  _V )
2825, 27sylibr 224 . . . . . . . . . 10  |-  ( ph  ->  A  =  { x  e.  A  |  B  e.  _V } )
2916dmmpt 5630 . . . . . . . . . 10  |-  dom  F  =  { x  e.  A  |  B  e.  _V }
3028, 29syl6reqr 2675 . . . . . . . . 9  |-  ( ph  ->  dom  F  =  A )
3130eleq2d 2687 . . . . . . . 8  |-  ( ph  ->  ( x  e.  dom  F  <-> 
x  e.  A ) )
3231anbi1d 741 . . . . . . 7  |-  ( ph  ->  ( ( x  e. 
dom  F  /\  ( F `  x )  =  y )  <->  ( x  e.  A  /\  ( F `  x )  =  y ) ) )
3320, 32syl5bb 272 . . . . . 6  |-  ( ph  ->  ( x F y  <-> 
( x  e.  A  /\  ( F `  x
)  =  y ) ) )
3433bian1d 29306 . . . . 5  |-  ( ph  ->  ( ( x  e.  A  /\  x F y )  <->  ( x  e.  A  /\  ( F `  x )  =  y ) ) )
3516fveq1i 6192 . . . . . . . . . 10  |-  ( F `
 x )  =  ( ( x  e.  A  |->  B ) `  x )
36 simpr 477 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  A )
3726fvmpt2f 6283 . . . . . . . . . . 11  |-  ( ( x  e.  A  /\  B  e.  V )  ->  ( ( x  e.  A  |->  B ) `  x )  =  B )
3836, 21, 37syl2anc 693 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  B ) `  x
)  =  B )
3935, 38syl5eq 2668 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  B )
4039eqeq2d 2632 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
y  =  ( F `
 x )  <->  y  =  B ) )
4131biimpar 502 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  dom  F )
42 funbrfvb 6238 . . . . . . . . . 10  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( ( F `  x )  =  y  <-> 
x F y ) )
4318, 41, 42sylancr 695 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  (
( F `  x
)  =  y  <->  x F
y ) )
44 eqcom 2629 . . . . . . . . . . 11  |-  ( ( F `  x )  =  y  <->  y  =  ( F `  x ) )
4544bibi1i 328 . . . . . . . . . 10  |-  ( ( ( F `  x
)  =  y  <->  x F
y )  <->  ( y  =  ( F `  x )  <->  x F
y ) )
4645imbi2i 326 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  A )  ->  (
( F `  x
)  =  y  <->  x F
y ) )  <->  ( ( ph  /\  x  e.  A
)  ->  ( y  =  ( F `  x )  <->  x F
y ) ) )
4743, 46mpbi 220 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
y  =  ( F `
 x )  <->  x F
y ) )
4840, 47bitr3d 270 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
y  =  B  <->  x F
y ) )
4948ex 450 . . . . . 6  |-  ( ph  ->  ( x  e.  A  ->  ( y  =  B  <-> 
x F y ) ) )
5049pm5.32d 671 . . . . 5  |-  ( ph  ->  ( ( x  e.  A  /\  y  =  B )  <->  ( x  e.  A  /\  x F y ) ) )
5134, 50, 333bitr4rd 301 . . . 4  |-  ( ph  ->  ( x F y  <-> 
( x  e.  A  /\  y  =  B
) ) )
5214, 51mobid 2489 . . 3  |-  ( ph  ->  ( E* x  x F y  <->  E* x
( x  e.  A  /\  y  =  B
) ) )
5313, 52albid 2090 . 2  |-  ( ph  ->  ( A. y E* x  x F y  <->  A. y E* x ( x  e.  A  /\  y  =  B )
) )
5412, 53syl5bb 272 1  |-  ( ph  ->  ( Fun  `' F  <->  A. y E* x ( x  e.  A  /\  y  =  B )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483   F/wnf 1708    e. wcel 1990   E*wmo 2471   F/_wnfc 2751   A.wral 2912   {crab 2916   _Vcvv 3200   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113   dom cdm 5114   Rel wrel 5119   Fun wfun 5882   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator