Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofpreima2 Structured version   Visualization version   Unicode version

Theorem ofpreima2 29466
Description: Express the preimage of a function operation as a union of preimages. This version of ofpreima 29465 iterates the union over a smaller set. (Contributed by Thierry Arnoux, 8-Mar-2018.)
Hypotheses
Ref Expression
ofpreima.1  |-  ( ph  ->  F : A --> B )
ofpreima.2  |-  ( ph  ->  G : A --> C )
ofpreima.3  |-  ( ph  ->  A  e.  V )
ofpreima.4  |-  ( ph  ->  R  Fn  ( B  X.  C ) )
Assertion
Ref Expression
ofpreima2  |-  ( ph  ->  ( `' ( F  oF R G ) " D )  =  U_ p  e.  ( ( `' R " D )  i^i  ( ran  F  X.  ran  G
) ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) ) )
Distinct variable groups:    A, p    D, p    F, p    G, p    R, p    ph, p
Allowed substitution hints:    B( p)    C( p)    V( p)

Proof of Theorem ofpreima2
StepHypRef Expression
1 ofpreima.1 . . . 4  |-  ( ph  ->  F : A --> B )
2 ofpreima.2 . . . 4  |-  ( ph  ->  G : A --> C )
3 ofpreima.3 . . . 4  |-  ( ph  ->  A  e.  V )
4 ofpreima.4 . . . 4  |-  ( ph  ->  R  Fn  ( B  X.  C ) )
51, 2, 3, 4ofpreima 29465 . . 3  |-  ( ph  ->  ( `' ( F  oF R G ) " D )  =  U_ p  e.  ( `' R " D ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) ) )
6 inundif 4046 . . . . 5  |-  ( ( ( `' R " D )  i^i  ( ran  F  X.  ran  G
) )  u.  (
( `' R " D )  \  ( ran  F  X.  ran  G
) ) )  =  ( `' R " D )
7 iuneq1 4534 . . . . 5  |-  ( ( ( ( `' R " D )  i^i  ( ran  F  X.  ran  G
) )  u.  (
( `' R " D )  \  ( ran  F  X.  ran  G
) ) )  =  ( `' R " D )  ->  U_ p  e.  ( ( ( `' R " D )  i^i  ( ran  F  X.  ran  G ) )  u.  ( ( `' R " D ) 
\  ( ran  F  X.  ran  G ) ) ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) )  = 
U_ p  e.  ( `' R " D ) ( ( `' F " { ( 1st `  p
) } )  i^i  ( `' G " { ( 2nd `  p
) } ) ) )
86, 7ax-mp 5 . . . 4  |-  U_ p  e.  ( ( ( `' R " D )  i^i  ( ran  F  X.  ran  G ) )  u.  ( ( `' R " D ) 
\  ( ran  F  X.  ran  G ) ) ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) )  = 
U_ p  e.  ( `' R " D ) ( ( `' F " { ( 1st `  p
) } )  i^i  ( `' G " { ( 2nd `  p
) } ) )
9 iunxun 4605 . . . 4  |-  U_ p  e.  ( ( ( `' R " D )  i^i  ( ran  F  X.  ran  G ) )  u.  ( ( `' R " D ) 
\  ( ran  F  X.  ran  G ) ) ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) )  =  ( U_ p  e.  ( ( `' R " D )  i^i  ( ran  F  X.  ran  G
) ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) )  u. 
U_ p  e.  ( ( `' R " D )  \  ( ran  F  X.  ran  G
) ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) ) )
108, 9eqtr3i 2646 . . 3  |-  U_ p  e.  ( `' R " D ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) )  =  ( U_ p  e.  ( ( `' R " D )  i^i  ( ran  F  X.  ran  G
) ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) )  u. 
U_ p  e.  ( ( `' R " D )  \  ( ran  F  X.  ran  G
) ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) ) )
115, 10syl6eq 2672 . 2  |-  ( ph  ->  ( `' ( F  oF R G ) " D )  =  ( U_ p  e.  ( ( `' R " D )  i^i  ( ran  F  X.  ran  G
) ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) )  u. 
U_ p  e.  ( ( `' R " D )  \  ( ran  F  X.  ran  G
) ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) ) ) )
12 simpr 477 . . . . . . . . . . 11  |-  ( (
ph  /\  p  e.  ( ( `' R " D )  \  ( ran  F  X.  ran  G
) ) )  ->  p  e.  ( ( `' R " D ) 
\  ( ran  F  X.  ran  G ) ) )
1312eldifbd 3587 . . . . . . . . . 10  |-  ( (
ph  /\  p  e.  ( ( `' R " D )  \  ( ran  F  X.  ran  G
) ) )  ->  -.  p  e.  ( ran  F  X.  ran  G
) )
14 cnvimass 5485 . . . . . . . . . . . . . 14  |-  ( `' R " D ) 
C_  dom  R
15 fndm 5990 . . . . . . . . . . . . . . 15  |-  ( R  Fn  ( B  X.  C )  ->  dom  R  =  ( B  X.  C ) )
164, 15syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  R  =  ( B  X.  C ) )
1714, 16syl5sseq 3653 . . . . . . . . . . . . 13  |-  ( ph  ->  ( `' R " D )  C_  ( B  X.  C ) )
1817ssdifssd 3748 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( `' R " D )  \  ( ran  F  X.  ran  G
) )  C_  ( B  X.  C ) )
1918sselda 3603 . . . . . . . . . . 11  |-  ( (
ph  /\  p  e.  ( ( `' R " D )  \  ( ran  F  X.  ran  G
) ) )  ->  p  e.  ( B  X.  C ) )
20 1st2nd2 7205 . . . . . . . . . . 11  |-  ( p  e.  ( B  X.  C )  ->  p  =  <. ( 1st `  p
) ,  ( 2nd `  p ) >. )
21 elxp6 7200 . . . . . . . . . . . 12  |-  ( p  e.  ( ran  F  X.  ran  G )  <->  ( p  =  <. ( 1st `  p
) ,  ( 2nd `  p ) >.  /\  (
( 1st `  p
)  e.  ran  F  /\  ( 2nd `  p
)  e.  ran  G
) ) )
2221simplbi2 655 . . . . . . . . . . 11  |-  ( p  =  <. ( 1st `  p
) ,  ( 2nd `  p ) >.  ->  (
( ( 1st `  p
)  e.  ran  F  /\  ( 2nd `  p
)  e.  ran  G
)  ->  p  e.  ( ran  F  X.  ran  G ) ) )
2319, 20, 223syl 18 . . . . . . . . . 10  |-  ( (
ph  /\  p  e.  ( ( `' R " D )  \  ( ran  F  X.  ran  G
) ) )  -> 
( ( ( 1st `  p )  e.  ran  F  /\  ( 2nd `  p
)  e.  ran  G
)  ->  p  e.  ( ran  F  X.  ran  G ) ) )
2413, 23mtod 189 . . . . . . . . 9  |-  ( (
ph  /\  p  e.  ( ( `' R " D )  \  ( ran  F  X.  ran  G
) ) )  ->  -.  ( ( 1st `  p
)  e.  ran  F  /\  ( 2nd `  p
)  e.  ran  G
) )
25 ianor 509 . . . . . . . . 9  |-  ( -.  ( ( 1st `  p
)  e.  ran  F  /\  ( 2nd `  p
)  e.  ran  G
)  <->  ( -.  ( 1st `  p )  e. 
ran  F  \/  -.  ( 2nd `  p )  e.  ran  G ) )
2624, 25sylib 208 . . . . . . . 8  |-  ( (
ph  /\  p  e.  ( ( `' R " D )  \  ( ran  F  X.  ran  G
) ) )  -> 
( -.  ( 1st `  p )  e.  ran  F  \/  -.  ( 2nd `  p )  e.  ran  G ) )
27 disjsn 4246 . . . . . . . . 9  |-  ( ( ran  F  i^i  {
( 1st `  p
) } )  =  (/) 
<->  -.  ( 1st `  p
)  e.  ran  F
)
28 disjsn 4246 . . . . . . . . 9  |-  ( ( ran  G  i^i  {
( 2nd `  p
) } )  =  (/) 
<->  -.  ( 2nd `  p
)  e.  ran  G
)
2927, 28orbi12i 543 . . . . . . . 8  |-  ( ( ( ran  F  i^i  { ( 1st `  p
) } )  =  (/)  \/  ( ran  G  i^i  { ( 2nd `  p
) } )  =  (/) )  <->  ( -.  ( 1st `  p )  e. 
ran  F  \/  -.  ( 2nd `  p )  e.  ran  G ) )
3026, 29sylibr 224 . . . . . . 7  |-  ( (
ph  /\  p  e.  ( ( `' R " D )  \  ( ran  F  X.  ran  G
) ) )  -> 
( ( ran  F  i^i  { ( 1st `  p
) } )  =  (/)  \/  ( ran  G  i^i  { ( 2nd `  p
) } )  =  (/) ) )
311ffnd 6046 . . . . . . . . 9  |-  ( ph  ->  F  Fn  A )
32 dffn3 6054 . . . . . . . . 9  |-  ( F  Fn  A  <->  F : A
--> ran  F )
3331, 32sylib 208 . . . . . . . 8  |-  ( ph  ->  F : A --> ran  F
)
342ffnd 6046 . . . . . . . . . 10  |-  ( ph  ->  G  Fn  A )
35 dffn3 6054 . . . . . . . . . 10  |-  ( G  Fn  A  <->  G : A
--> ran  G )
3634, 35sylib 208 . . . . . . . . 9  |-  ( ph  ->  G : A --> ran  G
)
3736adantr 481 . . . . . . . 8  |-  ( (
ph  /\  p  e.  ( ( `' R " D )  \  ( ran  F  X.  ran  G
) ) )  ->  G : A --> ran  G
)
38 fimacnvdisj 6083 . . . . . . . . . . 11  |-  ( ( F : A --> ran  F  /\  ( ran  F  i^i  { ( 1st `  p
) } )  =  (/) )  ->  ( `' F " { ( 1st `  p ) } )  =  (/) )
39 ineq1 3807 . . . . . . . . . . . 12  |-  ( ( `' F " { ( 1st `  p ) } )  =  (/)  ->  ( ( `' F " { ( 1st `  p
) } )  i^i  ( `' G " { ( 2nd `  p
) } ) )  =  ( (/)  i^i  ( `' G " { ( 2nd `  p ) } ) ) )
40 0in 3969 . . . . . . . . . . . 12  |-  ( (/)  i^i  ( `' G " { ( 2nd `  p
) } ) )  =  (/)
4139, 40syl6eq 2672 . . . . . . . . . . 11  |-  ( ( `' F " { ( 1st `  p ) } )  =  (/)  ->  ( ( `' F " { ( 1st `  p
) } )  i^i  ( `' G " { ( 2nd `  p
) } ) )  =  (/) )
4238, 41syl 17 . . . . . . . . . 10  |-  ( ( F : A --> ran  F  /\  ( ran  F  i^i  { ( 1st `  p
) } )  =  (/) )  ->  ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) )  =  (/) )
4342ex 450 . . . . . . . . 9  |-  ( F : A --> ran  F  ->  ( ( ran  F  i^i  { ( 1st `  p
) } )  =  (/)  ->  ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) )  =  (/) ) )
44 fimacnvdisj 6083 . . . . . . . . . . 11  |-  ( ( G : A --> ran  G  /\  ( ran  G  i^i  { ( 2nd `  p
) } )  =  (/) )  ->  ( `' G " { ( 2nd `  p ) } )  =  (/) )
45 ineq2 3808 . . . . . . . . . . . 12  |-  ( ( `' G " { ( 2nd `  p ) } )  =  (/)  ->  ( ( `' F " { ( 1st `  p
) } )  i^i  ( `' G " { ( 2nd `  p
) } ) )  =  ( ( `' F " { ( 1st `  p ) } )  i^i  (/) ) )
46 in0 3968 . . . . . . . . . . . 12  |-  ( ( `' F " { ( 1st `  p ) } )  i^i  (/) )  =  (/)
4745, 46syl6eq 2672 . . . . . . . . . . 11  |-  ( ( `' G " { ( 2nd `  p ) } )  =  (/)  ->  ( ( `' F " { ( 1st `  p
) } )  i^i  ( `' G " { ( 2nd `  p
) } ) )  =  (/) )
4844, 47syl 17 . . . . . . . . . 10  |-  ( ( G : A --> ran  G  /\  ( ran  G  i^i  { ( 2nd `  p
) } )  =  (/) )  ->  ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) )  =  (/) )
4948ex 450 . . . . . . . . 9  |-  ( G : A --> ran  G  ->  ( ( ran  G  i^i  { ( 2nd `  p
) } )  =  (/)  ->  ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) )  =  (/) ) )
5043, 49jaao 531 . . . . . . . 8  |-  ( ( F : A --> ran  F  /\  G : A --> ran  G
)  ->  ( (
( ran  F  i^i  { ( 1st `  p
) } )  =  (/)  \/  ( ran  G  i^i  { ( 2nd `  p
) } )  =  (/) )  ->  ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) )  =  (/) ) )
5133, 37, 50syl2an2r 876 . . . . . . 7  |-  ( (
ph  /\  p  e.  ( ( `' R " D )  \  ( ran  F  X.  ran  G
) ) )  -> 
( ( ( ran 
F  i^i  { ( 1st `  p ) } )  =  (/)  \/  ( ran  G  i^i  { ( 2nd `  p ) } )  =  (/) )  ->  ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) )  =  (/) ) )
5230, 51mpd 15 . . . . . 6  |-  ( (
ph  /\  p  e.  ( ( `' R " D )  \  ( ran  F  X.  ran  G
) ) )  -> 
( ( `' F " { ( 1st `  p
) } )  i^i  ( `' G " { ( 2nd `  p
) } ) )  =  (/) )
5352iuneq2dv 4542 . . . . 5  |-  ( ph  ->  U_ p  e.  ( ( `' R " D )  \  ( ran  F  X.  ran  G
) ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) )  = 
U_ p  e.  ( ( `' R " D )  \  ( ran  F  X.  ran  G
) ) (/) )
54 iun0 4576 . . . . 5  |-  U_ p  e.  ( ( `' R " D )  \  ( ran  F  X.  ran  G
) ) (/)  =  (/)
5553, 54syl6eq 2672 . . . 4  |-  ( ph  ->  U_ p  e.  ( ( `' R " D )  \  ( ran  F  X.  ran  G
) ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) )  =  (/) )
5655uneq2d 3767 . . 3  |-  ( ph  ->  ( U_ p  e.  ( ( `' R " D )  i^i  ( ran  F  X.  ran  G
) ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) )  u. 
U_ p  e.  ( ( `' R " D )  \  ( ran  F  X.  ran  G
) ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) ) )  =  ( U_ p  e.  ( ( `' R " D )  i^i  ( ran  F  X.  ran  G
) ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) )  u.  (/) ) )
57 un0 3967 . . 3  |-  ( U_ p  e.  ( ( `' R " D )  i^i  ( ran  F  X.  ran  G ) ) ( ( `' F " { ( 1st `  p
) } )  i^i  ( `' G " { ( 2nd `  p
) } ) )  u.  (/) )  =  U_ p  e.  ( ( `' R " D )  i^i  ( ran  F  X.  ran  G ) ) ( ( `' F " { ( 1st `  p
) } )  i^i  ( `' G " { ( 2nd `  p
) } ) )
5856, 57syl6eq 2672 . 2  |-  ( ph  ->  ( U_ p  e.  ( ( `' R " D )  i^i  ( ran  F  X.  ran  G
) ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) )  u. 
U_ p  e.  ( ( `' R " D )  \  ( ran  F  X.  ran  G
) ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) ) )  =  U_ p  e.  ( ( `' R " D )  i^i  ( ran  F  X.  ran  G
) ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) ) )
5911, 58eqtrd 2656 1  |-  ( ph  ->  ( `' ( F  oF R G ) " D )  =  U_ p  e.  ( ( `' R " D )  i^i  ( ran  F  X.  ran  G
) ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    \ cdif 3571    u. cun 3572    i^i cin 3573   (/)c0 3915   {csn 4177   <.cop 4183   U_ciun 4520    X. cxp 5112   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895   1stc1st 7166   2ndc2nd 7167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-1st 7168  df-2nd 7169
This theorem is referenced by:  sibfof  30402
  Copyright terms: Public domain W3C validator