| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ofpreima2 | Structured version Visualization version Unicode version | ||
| Description: Express the preimage of a function operation as a union of preimages. This version of ofpreima 29465 iterates the union over a smaller set. (Contributed by Thierry Arnoux, 8-Mar-2018.) |
| Ref | Expression |
|---|---|
| ofpreima.1 |
|
| ofpreima.2 |
|
| ofpreima.3 |
|
| ofpreima.4 |
|
| Ref | Expression |
|---|---|
| ofpreima2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ofpreima.1 |
. . . 4
| |
| 2 | ofpreima.2 |
. . . 4
| |
| 3 | ofpreima.3 |
. . . 4
| |
| 4 | ofpreima.4 |
. . . 4
| |
| 5 | 1, 2, 3, 4 | ofpreima 29465 |
. . 3
|
| 6 | inundif 4046 |
. . . . 5
| |
| 7 | iuneq1 4534 |
. . . . 5
| |
| 8 | 6, 7 | ax-mp 5 |
. . . 4
|
| 9 | iunxun 4605 |
. . . 4
| |
| 10 | 8, 9 | eqtr3i 2646 |
. . 3
|
| 11 | 5, 10 | syl6eq 2672 |
. 2
|
| 12 | simpr 477 |
. . . . . . . . . . 11
| |
| 13 | 12 | eldifbd 3587 |
. . . . . . . . . 10
|
| 14 | cnvimass 5485 |
. . . . . . . . . . . . . 14
| |
| 15 | fndm 5990 |
. . . . . . . . . . . . . . 15
| |
| 16 | 4, 15 | syl 17 |
. . . . . . . . . . . . . 14
|
| 17 | 14, 16 | syl5sseq 3653 |
. . . . . . . . . . . . 13
|
| 18 | 17 | ssdifssd 3748 |
. . . . . . . . . . . 12
|
| 19 | 18 | sselda 3603 |
. . . . . . . . . . 11
|
| 20 | 1st2nd2 7205 |
. . . . . . . . . . 11
| |
| 21 | elxp6 7200 |
. . . . . . . . . . . 12
| |
| 22 | 21 | simplbi2 655 |
. . . . . . . . . . 11
|
| 23 | 19, 20, 22 | 3syl 18 |
. . . . . . . . . 10
|
| 24 | 13, 23 | mtod 189 |
. . . . . . . . 9
|
| 25 | ianor 509 |
. . . . . . . . 9
| |
| 26 | 24, 25 | sylib 208 |
. . . . . . . 8
|
| 27 | disjsn 4246 |
. . . . . . . . 9
| |
| 28 | disjsn 4246 |
. . . . . . . . 9
| |
| 29 | 27, 28 | orbi12i 543 |
. . . . . . . 8
|
| 30 | 26, 29 | sylibr 224 |
. . . . . . 7
|
| 31 | 1 | ffnd 6046 |
. . . . . . . . 9
|
| 32 | dffn3 6054 |
. . . . . . . . 9
| |
| 33 | 31, 32 | sylib 208 |
. . . . . . . 8
|
| 34 | 2 | ffnd 6046 |
. . . . . . . . . 10
|
| 35 | dffn3 6054 |
. . . . . . . . . 10
| |
| 36 | 34, 35 | sylib 208 |
. . . . . . . . 9
|
| 37 | 36 | adantr 481 |
. . . . . . . 8
|
| 38 | fimacnvdisj 6083 |
. . . . . . . . . . 11
| |
| 39 | ineq1 3807 |
. . . . . . . . . . . 12
| |
| 40 | 0in 3969 |
. . . . . . . . . . . 12
| |
| 41 | 39, 40 | syl6eq 2672 |
. . . . . . . . . . 11
|
| 42 | 38, 41 | syl 17 |
. . . . . . . . . 10
|
| 43 | 42 | ex 450 |
. . . . . . . . 9
|
| 44 | fimacnvdisj 6083 |
. . . . . . . . . . 11
| |
| 45 | ineq2 3808 |
. . . . . . . . . . . 12
| |
| 46 | in0 3968 |
. . . . . . . . . . . 12
| |
| 47 | 45, 46 | syl6eq 2672 |
. . . . . . . . . . 11
|
| 48 | 44, 47 | syl 17 |
. . . . . . . . . 10
|
| 49 | 48 | ex 450 |
. . . . . . . . 9
|
| 50 | 43, 49 | jaao 531 |
. . . . . . . 8
|
| 51 | 33, 37, 50 | syl2an2r 876 |
. . . . . . 7
|
| 52 | 30, 51 | mpd 15 |
. . . . . 6
|
| 53 | 52 | iuneq2dv 4542 |
. . . . 5
|
| 54 | iun0 4576 |
. . . . 5
| |
| 55 | 53, 54 | syl6eq 2672 |
. . . 4
|
| 56 | 55 | uneq2d 3767 |
. . 3
|
| 57 | un0 3967 |
. . 3
| |
| 58 | 56, 57 | syl6eq 2672 |
. 2
|
| 59 | 11, 58 | eqtrd 2656 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-1st 7168 df-2nd 7169 |
| This theorem is referenced by: sibfof 30402 |
| Copyright terms: Public domain | W3C validator |