| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > afvco2 | Structured version Visualization version Unicode version | ||
| Description: Value of a function composition, analogous to fvco2 6273. (Contributed by Alexander van der Vekens, 23-Jul-2017.) |
| Ref | Expression |
|---|---|
| afvco2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvco2 6273 |
. . . . 5
| |
| 2 | 1 | adantl 482 |
. . . 4
|
| 3 | simpll 790 |
. . . . . 6
| |
| 4 | df-fn 5891 |
. . . . . . . . 9
| |
| 5 | simpll 790 |
. . . . . . . . . 10
| |
| 6 | eleq2 2690 |
. . . . . . . . . . . . . 14
| |
| 7 | 6 | eqcoms 2630 |
. . . . . . . . . . . . 13
|
| 8 | 7 | biimpd 219 |
. . . . . . . . . . . 12
|
| 9 | 8 | adantl 482 |
. . . . . . . . . . 11
|
| 10 | 9 | imp 445 |
. . . . . . . . . 10
|
| 11 | 5, 10 | jca 554 |
. . . . . . . . 9
|
| 12 | 4, 11 | sylanb 489 |
. . . . . . . 8
|
| 13 | 12 | adantl 482 |
. . . . . . 7
|
| 14 | dmfco 6272 |
. . . . . . 7
| |
| 15 | 13, 14 | syl 17 |
. . . . . 6
|
| 16 | 3, 15 | mpbird 247 |
. . . . 5
|
| 17 | funcoressn 41207 |
. . . . 5
| |
| 18 | df-dfat 41196 |
. . . . . 6
| |
| 19 | afvfundmfveq 41218 |
. . . . . 6
| |
| 20 | 18, 19 | sylbir 225 |
. . . . 5
|
| 21 | 16, 17, 20 | syl2anc 693 |
. . . 4
|
| 22 | df-dfat 41196 |
. . . . . 6
| |
| 23 | afvfundmfveq 41218 |
. . . . . 6
| |
| 24 | 22, 23 | sylbir 225 |
. . . . 5
|
| 25 | 24 | adantr 481 |
. . . 4
|
| 26 | 2, 21, 25 | 3eqtr4d 2666 |
. . 3
|
| 27 | ianor 509 |
. . . . . 6
| |
| 28 | 14 | funfni 5991 |
. . . . . . . . . . 11
|
| 29 | 28 | bicomd 213 |
. . . . . . . . . 10
|
| 30 | 29 | notbid 308 |
. . . . . . . . 9
|
| 31 | 30 | biimpd 219 |
. . . . . . . 8
|
| 32 | ndmafv 41220 |
. . . . . . . 8
| |
| 33 | 31, 32 | syl6com 37 |
. . . . . . 7
|
| 34 | funressnfv 41208 |
. . . . . . . . . . . 12
| |
| 35 | 34 | ex 450 |
. . . . . . . . . . 11
|
| 36 | afvnfundmuv 41219 |
. . . . . . . . . . . 12
| |
| 37 | 18, 36 | sylnbir 321 |
. . . . . . . . . . 11
|
| 38 | 35, 37 | nsyl4 156 |
. . . . . . . . . 10
|
| 39 | 38 | com12 32 |
. . . . . . . . 9
|
| 40 | 39 | con1d 139 |
. . . . . . . 8
|
| 41 | 40 | com12 32 |
. . . . . . 7
|
| 42 | 33, 41 | jaoi 394 |
. . . . . 6
|
| 43 | 27, 42 | sylbi 207 |
. . . . 5
|
| 44 | 43 | imp 445 |
. . . 4
|
| 45 | afvnfundmuv 41219 |
. . . . . . 7
| |
| 46 | 22, 45 | sylnbir 321 |
. . . . . 6
|
| 47 | 46 | eqcomd 2628 |
. . . . 5
|
| 48 | 47 | adantr 481 |
. . . 4
|
| 49 | 44, 48 | eqtrd 2656 |
. . 3
|
| 50 | 26, 49 | pm2.61ian 831 |
. 2
|
| 51 | eqidd 2623 |
. . 3
| |
| 52 | 4, 9 | sylbi 207 |
. . . . . 6
|
| 53 | 52 | imp 445 |
. . . . 5
|
| 54 | fnfun 5988 |
. . . . . . 7
| |
| 55 | funres 5929 |
. . . . . . 7
| |
| 56 | 54, 55 | syl 17 |
. . . . . 6
|
| 57 | 56 | adantr 481 |
. . . . 5
|
| 58 | df-dfat 41196 |
. . . . . 6
| |
| 59 | afvfundmfveq 41218 |
. . . . . 6
| |
| 60 | 58, 59 | sylbir 225 |
. . . . 5
|
| 61 | 53, 57, 60 | syl2anc 693 |
. . . 4
|
| 62 | 61 | eqcomd 2628 |
. . 3
|
| 63 | 51, 62 | afveq12d 41213 |
. 2
|
| 64 | 50, 63 | eqtrd 2656 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 df-dfat 41196 df-afv 41197 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |