MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funeu Structured version   Visualization version   Unicode version

Theorem funeu 5913
Description: There is exactly one value of a function. (Contributed by NM, 22-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
funeu  |-  ( ( Fun  F  /\  A F B )  ->  E! y  A F y )
Distinct variable groups:    y, A    y, F
Allowed substitution hint:    B( y)

Proof of Theorem funeu
StepHypRef Expression
1 funrel 5905 . . . 4  |-  ( Fun 
F  ->  Rel  F )
2 releldm 5358 . . . 4  |-  ( ( Rel  F  /\  A F B )  ->  A  e.  dom  F )
31, 2sylan 488 . . 3  |-  ( ( Fun  F  /\  A F B )  ->  A  e.  dom  F )
4 eldmg 5319 . . . 4  |-  ( A  e.  dom  F  -> 
( A  e.  dom  F  <->  E. y  A F
y ) )
54ibi 256 . . 3  |-  ( A  e.  dom  F  ->  E. y  A F
y )
63, 5syl 17 . 2  |-  ( ( Fun  F  /\  A F B )  ->  E. y  A F y )
7 funmo 5904 . . . 4  |-  ( Fun 
F  ->  E* y  A F y )
87adantr 481 . . 3  |-  ( ( Fun  F  /\  A F B )  ->  E* y  A F y )
9 df-mo 2475 . . 3  |-  ( E* y  A F y  <-> 
( E. y  A F y  ->  E! y  A F y ) )
108, 9sylib 208 . 2  |-  ( ( Fun  F  /\  A F B )  ->  ( E. y  A F
y  ->  E! y  A F y ) )
116, 10mpd 15 1  |-  ( ( Fun  F  /\  A F B )  ->  E! y  A F y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384   E.wex 1704    e. wcel 1990   E!weu 2470   E*wmo 2471   class class class wbr 4653   dom cdm 5114   Rel wrel 5119   Fun wfun 5882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-fun 5890
This theorem is referenced by:  funeu2  5914  funbrfv  6234  frege124d  38053
  Copyright terms: Public domain W3C validator