Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funimassd Structured version   Visualization version   Unicode version

Theorem funimassd 39431
Description: Sufficient condition for the image of a function being a subclass. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
funimassd.1  |-  F/ x ph
funimassd.2  |-  ( ph  ->  Fun  F )
funimassd.3  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  e.  B )
Assertion
Ref Expression
funimassd  |-  ( ph  ->  ( F " A
)  C_  B )
Distinct variable groups:    x, A    x, B    x, F
Allowed substitution hint:    ph( x)

Proof of Theorem funimassd
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 funimassd.2 . . . . 5  |-  ( ph  ->  Fun  F )
21adantr 481 . . . 4  |-  ( (
ph  /\  y  e.  ( F " A ) )  ->  Fun  F )
3 simpr 477 . . . 4  |-  ( (
ph  /\  y  e.  ( F " A ) )  ->  y  e.  ( F " A ) )
4 fvelima 6248 . . . 4  |-  ( ( Fun  F  /\  y  e.  ( F " A
) )  ->  E. x  e.  A  ( F `  x )  =  y )
52, 3, 4syl2anc 693 . . 3  |-  ( (
ph  /\  y  e.  ( F " A ) )  ->  E. x  e.  A  ( F `  x )  =  y )
6 funimassd.1 . . . . 5  |-  F/ x ph
7 nfv 1843 . . . . 5  |-  F/ x  y  e.  ( F " A )
86, 7nfan 1828 . . . 4  |-  F/ x
( ph  /\  y  e.  ( F " A
) )
9 nfv 1843 . . . 4  |-  F/ x  y  e.  B
10 id 22 . . . . . . . . 9  |-  ( ( F `  x )  =  y  ->  ( F `  x )  =  y )
1110eqcomd 2628 . . . . . . . 8  |-  ( ( F `  x )  =  y  ->  y  =  ( F `  x ) )
12113ad2ant3 1084 . . . . . . 7  |-  ( (
ph  /\  x  e.  A  /\  ( F `  x )  =  y )  ->  y  =  ( F `  x ) )
13 funimassd.3 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  e.  B )
14133adant3 1081 . . . . . . 7  |-  ( (
ph  /\  x  e.  A  /\  ( F `  x )  =  y )  ->  ( F `  x )  e.  B
)
1512, 14eqeltrd 2701 . . . . . 6  |-  ( (
ph  /\  x  e.  A  /\  ( F `  x )  =  y )  ->  y  e.  B )
16153exp 1264 . . . . 5  |-  ( ph  ->  ( x  e.  A  ->  ( ( F `  x )  =  y  ->  y  e.  B
) ) )
1716adantr 481 . . . 4  |-  ( (
ph  /\  y  e.  ( F " A ) )  ->  ( x  e.  A  ->  ( ( F `  x )  =  y  ->  y  e.  B ) ) )
188, 9, 17rexlimd 3026 . . 3  |-  ( (
ph  /\  y  e.  ( F " A ) )  ->  ( E. x  e.  A  ( F `  x )  =  y  ->  y  e.  B ) )
195, 18mpd 15 . 2  |-  ( (
ph  /\  y  e.  ( F " A ) )  ->  y  e.  B )
2019ssd 39252 1  |-  ( ph  ->  ( F " A
)  C_  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   F/wnf 1708    e. wcel 1990   E.wrex 2913    C_ wss 3574   "cima 5117   Fun wfun 5882   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator