MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fveqressseq Structured version   Visualization version   Unicode version

Theorem fveqressseq 6355
Description: If the empty set is not contained in the range of a function, and the function values of another class (not necessarily a function) are equal to the function values of the function for all elements of the domain of the function, then the class restricted to the domain of the function is the function itself. (Contributed by AV, 28-Jan-2020.)
Hypothesis
Ref Expression
fveqdmss.1  |-  D  =  dom  B
Assertion
Ref Expression
fveqressseq  |-  ( ( Fun  B  /\  (/)  e/  ran  B  /\  A. x  e.  D  ( A `  x )  =  ( B `  x ) )  ->  ( A  |`  D )  =  B )
Distinct variable groups:    x, A    x, B    x, D

Proof of Theorem fveqressseq
StepHypRef Expression
1 fveqdmss.1 . . . 4  |-  D  =  dom  B
21fveqdmss 6354 . . 3  |-  ( ( Fun  B  /\  (/)  e/  ran  B  /\  A. x  e.  D  ( A `  x )  =  ( B `  x ) )  ->  D  C_  dom  A )
3 dmres 5419 . . . . 5  |-  dom  ( A  |`  D )  =  ( D  i^i  dom  A )
4 incom 3805 . . . . . 6  |-  ( D  i^i  dom  A )  =  ( dom  A  i^i  D )
5 sseqin2 3817 . . . . . . 7  |-  ( D 
C_  dom  A  <->  ( dom  A  i^i  D )  =  D )
65biimpi 206 . . . . . 6  |-  ( D 
C_  dom  A  ->  ( dom  A  i^i  D
)  =  D )
74, 6syl5eq 2668 . . . . 5  |-  ( D 
C_  dom  A  ->  ( D  i^i  dom  A
)  =  D )
83, 7syl5eq 2668 . . . 4  |-  ( D 
C_  dom  A  ->  dom  ( A  |`  D )  =  D )
98, 1syl6eq 2672 . . 3  |-  ( D 
C_  dom  A  ->  dom  ( A  |`  D )  =  dom  B )
102, 9syl 17 . 2  |-  ( ( Fun  B  /\  (/)  e/  ran  B  /\  A. x  e.  D  ( A `  x )  =  ( B `  x ) )  ->  dom  ( A  |`  D )  =  dom  B )
11 fvres 6207 . . . . . . . 8  |-  ( x  e.  D  ->  (
( A  |`  D ) `
 x )  =  ( A `  x
) )
1211adantl 482 . . . . . . 7  |-  ( ( ( Fun  B  /\  (/) 
e/  ran  B )  /\  x  e.  D
)  ->  ( ( A  |`  D ) `  x )  =  ( A `  x ) )
13 id 22 . . . . . . 7  |-  ( ( A `  x )  =  ( B `  x )  ->  ( A `  x )  =  ( B `  x ) )
1412, 13sylan9eq 2676 . . . . . 6  |-  ( ( ( ( Fun  B  /\  (/)  e/  ran  B
)  /\  x  e.  D )  /\  ( A `  x )  =  ( B `  x ) )  -> 
( ( A  |`  D ) `  x
)  =  ( B `
 x ) )
1514ex 450 . . . . 5  |-  ( ( ( Fun  B  /\  (/) 
e/  ran  B )  /\  x  e.  D
)  ->  ( ( A `  x )  =  ( B `  x )  ->  (
( A  |`  D ) `
 x )  =  ( B `  x
) ) )
1615ralimdva 2962 . . . 4  |-  ( ( Fun  B  /\  (/)  e/  ran  B )  ->  ( A. x  e.  D  ( A `  x )  =  ( B `  x )  ->  A. x  e.  D  ( ( A  |`  D ) `  x )  =  ( B `  x ) ) )
17163impia 1261 . . 3  |-  ( ( Fun  B  /\  (/)  e/  ran  B  /\  A. x  e.  D  ( A `  x )  =  ( B `  x ) )  ->  A. x  e.  D  ( ( A  |`  D ) `  x )  =  ( B `  x ) )
182, 7syl 17 . . . . 5  |-  ( ( Fun  B  /\  (/)  e/  ran  B  /\  A. x  e.  D  ( A `  x )  =  ( B `  x ) )  ->  ( D  i^i  dom  A )  =  D )
193, 18syl5eq 2668 . . . 4  |-  ( ( Fun  B  /\  (/)  e/  ran  B  /\  A. x  e.  D  ( A `  x )  =  ( B `  x ) )  ->  dom  ( A  |`  D )  =  D )
2019raleqdv 3144 . . 3  |-  ( ( Fun  B  /\  (/)  e/  ran  B  /\  A. x  e.  D  ( A `  x )  =  ( B `  x ) )  ->  ( A. x  e.  dom  ( A  |`  D ) ( ( A  |`  D ) `  x )  =  ( B `  x )  <->  A. x  e.  D  ( ( A  |`  D ) `  x
)  =  ( B `
 x ) ) )
2117, 20mpbird 247 . 2  |-  ( ( Fun  B  /\  (/)  e/  ran  B  /\  A. x  e.  D  ( A `  x )  =  ( B `  x ) )  ->  A. x  e.  dom  ( A  |`  D ) ( ( A  |`  D ) `  x )  =  ( B `  x ) )
22 simpll 790 . . . . . . . 8  |-  ( ( ( Fun  B  /\  (/) 
e/  ran  B )  /\  x  e.  D
)  ->  Fun  B )
231eleq2i 2693 . . . . . . . . . 10  |-  ( x  e.  D  <->  x  e.  dom  B )
2423biimpi 206 . . . . . . . . 9  |-  ( x  e.  D  ->  x  e.  dom  B )
2524adantl 482 . . . . . . . 8  |-  ( ( ( Fun  B  /\  (/) 
e/  ran  B )  /\  x  e.  D
)  ->  x  e.  dom  B )
26 simplr 792 . . . . . . . 8  |-  ( ( ( Fun  B  /\  (/) 
e/  ran  B )  /\  x  e.  D
)  ->  (/)  e/  ran  B )
27 nelrnfvne 6353 . . . . . . . 8  |-  ( ( Fun  B  /\  x  e.  dom  B  /\  (/)  e/  ran  B )  ->  ( B `  x )  =/=  (/) )
2822, 25, 26, 27syl3anc 1326 . . . . . . 7  |-  ( ( ( Fun  B  /\  (/) 
e/  ran  B )  /\  x  e.  D
)  ->  ( B `  x )  =/=  (/) )
29 neeq1 2856 . . . . . . 7  |-  ( ( A `  x )  =  ( B `  x )  ->  (
( A `  x
)  =/=  (/)  <->  ( B `  x )  =/=  (/) ) )
3028, 29syl5ibrcom 237 . . . . . 6  |-  ( ( ( Fun  B  /\  (/) 
e/  ran  B )  /\  x  e.  D
)  ->  ( ( A `  x )  =  ( B `  x )  ->  ( A `  x )  =/=  (/) ) )
3130ralimdva 2962 . . . . 5  |-  ( ( Fun  B  /\  (/)  e/  ran  B )  ->  ( A. x  e.  D  ( A `  x )  =  ( B `  x )  ->  A. x  e.  D  ( A `  x )  =/=  (/) ) )
32313impia 1261 . . . 4  |-  ( ( Fun  B  /\  (/)  e/  ran  B  /\  A. x  e.  D  ( A `  x )  =  ( B `  x ) )  ->  A. x  e.  D  ( A `  x )  =/=  (/) )
33 fvn0ssdmfun 6350 . . . . 5  |-  ( A. x  e.  D  ( A `  x )  =/=  (/)  ->  ( D  C_ 
dom  A  /\  Fun  ( A  |`  D ) ) )
3433simprd 479 . . . 4  |-  ( A. x  e.  D  ( A `  x )  =/=  (/)  ->  Fun  ( A  |`  D ) )
3532, 34syl 17 . . 3  |-  ( ( Fun  B  /\  (/)  e/  ran  B  /\  A. x  e.  D  ( A `  x )  =  ( B `  x ) )  ->  Fun  ( A  |`  D ) )
36 simp1 1061 . . 3  |-  ( ( Fun  B  /\  (/)  e/  ran  B  /\  A. x  e.  D  ( A `  x )  =  ( B `  x ) )  ->  Fun  B )
37 eqfunfv 6316 . . 3  |-  ( ( Fun  ( A  |`  D )  /\  Fun  B )  ->  ( ( A  |`  D )  =  B  <->  ( dom  ( A  |`  D )  =  dom  B  /\  A. x  e.  dom  ( A  |`  D ) ( ( A  |`  D ) `  x )  =  ( B `  x ) ) ) )
3835, 36, 37syl2anc 693 . 2  |-  ( ( Fun  B  /\  (/)  e/  ran  B  /\  A. x  e.  D  ( A `  x )  =  ( B `  x ) )  ->  ( ( A  |`  D )  =  B  <->  ( dom  ( A  |`  D )  =  dom  B  /\  A. x  e.  dom  ( A  |`  D ) ( ( A  |`  D ) `  x )  =  ( B `  x ) ) ) )
3910, 21, 38mpbir2and 957 1  |-  ( ( Fun  B  /\  (/)  e/  ran  B  /\  A. x  e.  D  ( A `  x )  =  ( B `  x ) )  ->  ( A  |`  D )  =  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    e/ wnel 2897   A.wral 2912    i^i cin 3573    C_ wss 3574   (/)c0 3915   dom cdm 5114   ran crn 5115    |` cres 5116   Fun wfun 5882   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  plusfreseq  41772
  Copyright terms: Public domain W3C validator