Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  plusfreseq Structured version   Visualization version   Unicode version

Theorem plusfreseq 41772
Description: If the empty set is not contained in the range of the group addition function of an extensible structure (not necessarily a magma), the restriction of the addition operation to (the Cartesian square of) the base set is the functionalization of it. (Contributed by AV, 28-Jan-2020.)
Hypotheses
Ref Expression
plusfreseq.1  |-  B  =  ( Base `  M
)
plusfreseq.2  |-  .+  =  ( +g  `  M )
plusfreseq.3  |-  .+^  =  ( +f `  M
)
Assertion
Ref Expression
plusfreseq  |-  ( (/)  e/ 
ran  .+^  ->  (  .+  |`  ( B  X.  B
) )  =  .+^  )

Proof of Theorem plusfreseq
Dummy variables  x  p  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plusfreseq.1 . . . . 5  |-  B  =  ( Base `  M
)
2 plusfreseq.3 . . . . 5  |-  .+^  =  ( +f `  M
)
31, 2plusffn 17250 . . . 4  |-  .+^  Fn  ( B  X.  B )
4 fnfun 5988 . . . 4  |-  (  .+^  Fn  ( B  X.  B
)  ->  Fun  .+^  )
53, 4ax-mp 5 . . 3  |-  Fun  .+^
65a1i 11 . 2  |-  ( (/)  e/ 
ran  .+^  ->  Fun  .+^  )
7 id 22 . 2  |-  ( (/)  e/ 
ran  .+^  ->  (/)  e/  ran  .+^  )
8 plusfreseq.2 . . . . . . 7  |-  .+  =  ( +g  `  M )
91, 8, 2plusfval 17248 . . . . . 6  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( x  .+^  y )  =  ( x  .+  y ) )
109eqcomd 2628 . . . . 5  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( x  .+  y
)  =  ( x 
.+^  y ) )
1110rgen2a 2977 . . . 4  |-  A. x  e.  B  A. y  e.  B  ( x  .+  y )  =  ( x  .+^  y )
1211a1i 11 . . 3  |-  ( (/)  e/ 
ran  .+^  ->  A. x  e.  B  A. y  e.  B  ( x  .+  y )  =  ( x  .+^  y )
)
13 fveq2 6191 . . . . . 6  |-  ( p  =  <. x ,  y
>.  ->  (  .+  `  p
)  =  (  .+  ` 
<. x ,  y >.
) )
14 df-ov 6653 . . . . . 6  |-  ( x 
.+  y )  =  (  .+  `  <. x ,  y >. )
1513, 14syl6eqr 2674 . . . . 5  |-  ( p  =  <. x ,  y
>.  ->  (  .+  `  p
)  =  ( x 
.+  y ) )
16 fveq2 6191 . . . . . 6  |-  ( p  =  <. x ,  y
>.  ->  (  .+^  `  p
)  =  (  .+^  ` 
<. x ,  y >.
) )
17 df-ov 6653 . . . . . 6  |-  ( x 
.+^  y )  =  (  .+^  `  <. x ,  y >. )
1816, 17syl6eqr 2674 . . . . 5  |-  ( p  =  <. x ,  y
>.  ->  (  .+^  `  p
)  =  ( x 
.+^  y ) )
1915, 18eqeq12d 2637 . . . 4  |-  ( p  =  <. x ,  y
>.  ->  ( (  .+  `  p )  =  ( 
.+^  `  p )  <->  ( x  .+  y )  =  ( x  .+^  y ) ) )
2019ralxp 5263 . . 3  |-  ( A. p  e.  ( B  X.  B ) (  .+  `  p )  =  ( 
.+^  `  p )  <->  A. x  e.  B  A. y  e.  B  (
x  .+  y )  =  ( x  .+^  y ) )
2112, 20sylibr 224 . 2  |-  ( (/)  e/ 
ran  .+^  ->  A. p  e.  ( B  X.  B
) (  .+  `  p
)  =  (  .+^  `  p ) )
22 fndm 5990 . . . . 5  |-  (  .+^  Fn  ( B  X.  B
)  ->  dom  .+^  =  ( B  X.  B ) )
2322eqcomd 2628 . . . 4  |-  (  .+^  Fn  ( B  X.  B
)  ->  ( B  X.  B )  =  dom  .+^  )
243, 23ax-mp 5 . . 3  |-  ( B  X.  B )  =  dom  .+^
2524fveqressseq 6355 . 2  |-  ( ( Fun  .+^  /\  (/)  e/  ran  .+^ 
/\  A. p  e.  ( B  X.  B ) (  .+  `  p
)  =  (  .+^  `  p ) )  -> 
(  .+  |`  ( B  X.  B ) )  =  .+^  )
266, 7, 21, 25syl3anc 1326 1  |-  ( (/)  e/ 
ran  .+^  ->  (  .+  |`  ( B  X.  B
) )  =  .+^  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    e/ wnel 2897   A.wral 2912   (/)c0 3915   <.cop 4183    X. cxp 5112   dom cdm 5114   ran crn 5115    |` cres 5116   Fun wfun 5882    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   +fcplusf 17239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-plusf 17241
This theorem is referenced by:  mgmplusfreseq  41773
  Copyright terms: Public domain W3C validator