| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmptt | Structured version Visualization version Unicode version | ||
| Description: Closed theorem form of fvmpt 6282. (Contributed by Scott Fenton, 21-Feb-2013.) (Revised by Mario Carneiro, 11-Sep-2015.) |
| Ref | Expression |
|---|---|
| fvmptt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1062 |
. . 3
| |
| 2 | 1 | fveq1d 6193 |
. 2
|
| 3 | risset 3062 |
. . . . 5
| |
| 4 | elex 3212 |
. . . . . 6
| |
| 5 | nfa1 2028 |
. . . . . . 7
| |
| 6 | nfv 1843 |
. . . . . . . 8
| |
| 7 | nffvmpt1 6199 |
. . . . . . . . 9
| |
| 8 | 7 | nfeq1 2778 |
. . . . . . . 8
|
| 9 | 6, 8 | nfim 1825 |
. . . . . . 7
|
| 10 | simprl 794 |
. . . . . . . . . . . . 13
| |
| 11 | simplr 792 |
. . . . . . . . . . . . . 14
| |
| 12 | simprr 796 |
. . . . . . . . . . . . . 14
| |
| 13 | 11, 12 | eqeltrd 2701 |
. . . . . . . . . . . . 13
|
| 14 | eqid 2622 |
. . . . . . . . . . . . . 14
| |
| 15 | 14 | fvmpt2 6291 |
. . . . . . . . . . . . 13
|
| 16 | 10, 13, 15 | syl2anc 693 |
. . . . . . . . . . . 12
|
| 17 | simpll 790 |
. . . . . . . . . . . . 13
| |
| 18 | 17 | fveq2d 6195 |
. . . . . . . . . . . 12
|
| 19 | 16, 18, 11 | 3eqtr3d 2664 |
. . . . . . . . . . 11
|
| 20 | 19 | exp43 640 |
. . . . . . . . . 10
|
| 21 | 20 | a2i 14 |
. . . . . . . . 9
|
| 22 | 21 | com23 86 |
. . . . . . . 8
|
| 23 | 22 | sps 2055 |
. . . . . . 7
|
| 24 | 5, 9, 23 | rexlimd 3026 |
. . . . . 6
|
| 25 | 4, 24 | syl7 74 |
. . . . 5
|
| 26 | 3, 25 | syl5bi 232 |
. . . 4
|
| 27 | 26 | imp32 449 |
. . 3
|
| 28 | 27 | 3adant2 1080 |
. 2
|
| 29 | 2, 28 | eqtrd 2656 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fv 5896 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |