MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  graop Structured version   Visualization version   Unicode version

Theorem graop 25921
Description: Any representation of a graph  G (especially as extensible structure  G  =  { <. ( Base `  ndx ) ,  V >. , 
<. (.ef `  ndx ) ,  E >. }) is convertible in a representation of the graph as ordered pair. (Contributed by AV, 7-Oct-2020.)
Hypothesis
Ref Expression
graop.h  |-  H  = 
<. (Vtx `  G ) ,  (iEdg `  G ) >.
Assertion
Ref Expression
graop  |-  ( (Vtx
`  G )  =  (Vtx `  H )  /\  (iEdg `  G )  =  (iEdg `  H )
)

Proof of Theorem graop
StepHypRef Expression
1 graop.h . . . 4  |-  H  = 
<. (Vtx `  G ) ,  (iEdg `  G ) >.
21fveq2i 6194 . . 3  |-  (Vtx `  H )  =  (Vtx
`  <. (Vtx `  G
) ,  (iEdg `  G ) >. )
3 fvex 6201 . . . 4  |-  (Vtx `  G )  e.  _V
4 fvex 6201 . . . 4  |-  (iEdg `  G )  e.  _V
5 opvtxfv 25884 . . . 4  |-  ( ( (Vtx `  G )  e.  _V  /\  (iEdg `  G )  e.  _V )  ->  (Vtx `  <. (Vtx
`  G ) ,  (iEdg `  G ) >. )  =  (Vtx `  G ) )
63, 4, 5mp2an 708 . . 3  |-  (Vtx `  <. (Vtx `  G ) ,  (iEdg `  G ) >. )  =  (Vtx `  G )
72, 6eqtr2i 2645 . 2  |-  (Vtx `  G )  =  (Vtx
`  H )
81fveq2i 6194 . . 3  |-  (iEdg `  H )  =  (iEdg `  <. (Vtx `  G
) ,  (iEdg `  G ) >. )
9 opiedgfv 25887 . . . 4  |-  ( ( (Vtx `  G )  e.  _V  /\  (iEdg `  G )  e.  _V )  ->  (iEdg `  <. (Vtx
`  G ) ,  (iEdg `  G ) >. )  =  (iEdg `  G ) )
103, 4, 9mp2an 708 . . 3  |-  (iEdg `  <. (Vtx `  G ) ,  (iEdg `  G ) >. )  =  (iEdg `  G )
118, 10eqtr2i 2645 . 2  |-  (iEdg `  G )  =  (iEdg `  H )
127, 11pm3.2i 471 1  |-  ( (Vtx
`  G )  =  (Vtx `  H )  /\  (iEdg `  G )  =  (iEdg `  H )
)
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   <.cop 4183   ` cfv 5888  Vtxcvtx 25874  iEdgciedg 25875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-1st 7168  df-2nd 7169  df-vtx 25876  df-iedg 25877
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator