MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausflimlem Structured version   Visualization version   Unicode version

Theorem hausflimlem 21783
Description: If  A and  B are both limits of the same filter, then all neighborhoods of  A and  B intersect. (Contributed by Mario Carneiro, 21-Sep-2015.)
Assertion
Ref Expression
hausflimlem  |-  ( ( ( A  e.  ( J  fLim  F )  /\  B  e.  ( J  fLim  F ) )  /\  ( U  e.  J  /\  V  e.  J )  /\  ( A  e.  U  /\  B  e.  V )
)  ->  ( U  i^i  V )  =/=  (/) )

Proof of Theorem hausflimlem
StepHypRef Expression
1 simp1l 1085 . . 3  |-  ( ( ( A  e.  ( J  fLim  F )  /\  B  e.  ( J  fLim  F ) )  /\  ( U  e.  J  /\  V  e.  J )  /\  ( A  e.  U  /\  B  e.  V )
)  ->  A  e.  ( J  fLim  F ) )
2 eqid 2622 . . . 4  |-  U. J  =  U. J
32flimfil 21773 . . 3  |-  ( A  e.  ( J  fLim  F )  ->  F  e.  ( Fil `  U. J
) )
41, 3syl 17 . 2  |-  ( ( ( A  e.  ( J  fLim  F )  /\  B  e.  ( J  fLim  F ) )  /\  ( U  e.  J  /\  V  e.  J )  /\  ( A  e.  U  /\  B  e.  V )
)  ->  F  e.  ( Fil `  U. J
) )
5 flimtop 21769 . . . . 5  |-  ( A  e.  ( J  fLim  F )  ->  J  e.  Top )
61, 5syl 17 . . . 4  |-  ( ( ( A  e.  ( J  fLim  F )  /\  B  e.  ( J  fLim  F ) )  /\  ( U  e.  J  /\  V  e.  J )  /\  ( A  e.  U  /\  B  e.  V )
)  ->  J  e.  Top )
7 simp2l 1087 . . . 4  |-  ( ( ( A  e.  ( J  fLim  F )  /\  B  e.  ( J  fLim  F ) )  /\  ( U  e.  J  /\  V  e.  J )  /\  ( A  e.  U  /\  B  e.  V )
)  ->  U  e.  J )
8 simp3l 1089 . . . 4  |-  ( ( ( A  e.  ( J  fLim  F )  /\  B  e.  ( J  fLim  F ) )  /\  ( U  e.  J  /\  V  e.  J )  /\  ( A  e.  U  /\  B  e.  V )
)  ->  A  e.  U )
9 opnneip 20923 . . . 4  |-  ( ( J  e.  Top  /\  U  e.  J  /\  A  e.  U )  ->  U  e.  ( ( nei `  J ) `
 { A }
) )
106, 7, 8, 9syl3anc 1326 . . 3  |-  ( ( ( A  e.  ( J  fLim  F )  /\  B  e.  ( J  fLim  F ) )  /\  ( U  e.  J  /\  V  e.  J )  /\  ( A  e.  U  /\  B  e.  V )
)  ->  U  e.  ( ( nei `  J
) `  { A } ) )
11 flimnei 21771 . . 3  |-  ( ( A  e.  ( J 
fLim  F )  /\  U  e.  ( ( nei `  J
) `  { A } ) )  ->  U  e.  F )
121, 10, 11syl2anc 693 . 2  |-  ( ( ( A  e.  ( J  fLim  F )  /\  B  e.  ( J  fLim  F ) )  /\  ( U  e.  J  /\  V  e.  J )  /\  ( A  e.  U  /\  B  e.  V )
)  ->  U  e.  F )
13 simp1r 1086 . . 3  |-  ( ( ( A  e.  ( J  fLim  F )  /\  B  e.  ( J  fLim  F ) )  /\  ( U  e.  J  /\  V  e.  J )  /\  ( A  e.  U  /\  B  e.  V )
)  ->  B  e.  ( J  fLim  F ) )
14 simp2r 1088 . . . 4  |-  ( ( ( A  e.  ( J  fLim  F )  /\  B  e.  ( J  fLim  F ) )  /\  ( U  e.  J  /\  V  e.  J )  /\  ( A  e.  U  /\  B  e.  V )
)  ->  V  e.  J )
15 simp3r 1090 . . . 4  |-  ( ( ( A  e.  ( J  fLim  F )  /\  B  e.  ( J  fLim  F ) )  /\  ( U  e.  J  /\  V  e.  J )  /\  ( A  e.  U  /\  B  e.  V )
)  ->  B  e.  V )
16 opnneip 20923 . . . 4  |-  ( ( J  e.  Top  /\  V  e.  J  /\  B  e.  V )  ->  V  e.  ( ( nei `  J ) `
 { B }
) )
176, 14, 15, 16syl3anc 1326 . . 3  |-  ( ( ( A  e.  ( J  fLim  F )  /\  B  e.  ( J  fLim  F ) )  /\  ( U  e.  J  /\  V  e.  J )  /\  ( A  e.  U  /\  B  e.  V )
)  ->  V  e.  ( ( nei `  J
) `  { B } ) )
18 flimnei 21771 . . 3  |-  ( ( B  e.  ( J 
fLim  F )  /\  V  e.  ( ( nei `  J
) `  { B } ) )  ->  V  e.  F )
1913, 17, 18syl2anc 693 . 2  |-  ( ( ( A  e.  ( J  fLim  F )  /\  B  e.  ( J  fLim  F ) )  /\  ( U  e.  J  /\  V  e.  J )  /\  ( A  e.  U  /\  B  e.  V )
)  ->  V  e.  F )
20 filinn0 21664 . 2  |-  ( ( F  e.  ( Fil `  U. J )  /\  U  e.  F  /\  V  e.  F )  ->  ( U  i^i  V
)  =/=  (/) )
214, 12, 19, 20syl3anc 1326 1  |-  ( ( ( A  e.  ( J  fLim  F )  /\  B  e.  ( J  fLim  F ) )  /\  ( U  e.  J  /\  V  e.  J )  /\  ( A  e.  U  /\  B  e.  V )
)  ->  ( U  i^i  V )  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    e. wcel 1990    =/= wne 2794    i^i cin 3573   (/)c0 3915   {csn 4177   U.cuni 4436   ` cfv 5888  (class class class)co 6650   Topctop 20698   neicnei 20901   Filcfil 21649    fLim cflim 21738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-fbas 19743  df-top 20699  df-nei 20902  df-fil 21650  df-flim 21743
This theorem is referenced by:  hausflimi  21784
  Copyright terms: Public domain W3C validator