MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausflimi Structured version   Visualization version   Unicode version

Theorem hausflimi 21784
Description: One direction of hausflim 21785. A filter in a Hausdorff space has at most one limit. (Contributed by FL, 14-Nov-2010.) (Revised by Mario Carneiro, 21-Sep-2015.)
Assertion
Ref Expression
hausflimi  |-  ( J  e.  Haus  ->  E* x  x  e.  ( J  fLim  F ) )
Distinct variable groups:    x, F    x, J

Proof of Theorem hausflimi
Dummy variables  v  u  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . . . . . . 9  |-  ( ( J  e.  Haus  /\  (
( x  e.  ( J  fLim  F )  /\  y  e.  ( J  fLim  F ) )  /\  x  =/=  y
) )  ->  J  e.  Haus )
2 simprll 802 . . . . . . . . . 10  |-  ( ( J  e.  Haus  /\  (
( x  e.  ( J  fLim  F )  /\  y  e.  ( J  fLim  F ) )  /\  x  =/=  y
) )  ->  x  e.  ( J  fLim  F
) )
3 eqid 2622 . . . . . . . . . . 11  |-  U. J  =  U. J
43flimelbas 21772 . . . . . . . . . 10  |-  ( x  e.  ( J  fLim  F )  ->  x  e.  U. J )
52, 4syl 17 . . . . . . . . 9  |-  ( ( J  e.  Haus  /\  (
( x  e.  ( J  fLim  F )  /\  y  e.  ( J  fLim  F ) )  /\  x  =/=  y
) )  ->  x  e.  U. J )
6 simprlr 803 . . . . . . . . . 10  |-  ( ( J  e.  Haus  /\  (
( x  e.  ( J  fLim  F )  /\  y  e.  ( J  fLim  F ) )  /\  x  =/=  y
) )  ->  y  e.  ( J  fLim  F
) )
73flimelbas 21772 . . . . . . . . . 10  |-  ( y  e.  ( J  fLim  F )  ->  y  e.  U. J )
86, 7syl 17 . . . . . . . . 9  |-  ( ( J  e.  Haus  /\  (
( x  e.  ( J  fLim  F )  /\  y  e.  ( J  fLim  F ) )  /\  x  =/=  y
) )  ->  y  e.  U. J )
9 simprr 796 . . . . . . . . 9  |-  ( ( J  e.  Haus  /\  (
( x  e.  ( J  fLim  F )  /\  y  e.  ( J  fLim  F ) )  /\  x  =/=  y
) )  ->  x  =/=  y )
103hausnei 21132 . . . . . . . . 9  |-  ( ( J  e.  Haus  /\  (
x  e.  U. J  /\  y  e.  U. J  /\  x  =/=  y
) )  ->  E. u  e.  J  E. v  e.  J  ( x  e.  u  /\  y  e.  v  /\  (
u  i^i  v )  =  (/) ) )
111, 5, 8, 9, 10syl13anc 1328 . . . . . . . 8  |-  ( ( J  e.  Haus  /\  (
( x  e.  ( J  fLim  F )  /\  y  e.  ( J  fLim  F ) )  /\  x  =/=  y
) )  ->  E. u  e.  J  E. v  e.  J  ( x  e.  u  /\  y  e.  v  /\  (
u  i^i  v )  =  (/) ) )
12 df-3an 1039 . . . . . . . . . 10  |-  ( ( x  e.  u  /\  y  e.  v  /\  ( u  i^i  v
)  =  (/) )  <->  ( (
x  e.  u  /\  y  e.  v )  /\  ( u  i^i  v
)  =  (/) ) )
13 simprl 794 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Haus  /\  (
( x  e.  ( J  fLim  F )  /\  y  e.  ( J  fLim  F ) )  /\  x  =/=  y
) )  ->  (
x  e.  ( J 
fLim  F )  /\  y  e.  ( J  fLim  F
) ) )
14 hausflimlem 21783 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  ( J  fLim  F )  /\  y  e.  ( J  fLim  F ) )  /\  ( u  e.  J  /\  v  e.  J )  /\  (
x  e.  u  /\  y  e.  v )
)  ->  ( u  i^i  v )  =/=  (/) )
15143expa 1265 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  ( J  fLim  F
)  /\  y  e.  ( J  fLim  F ) )  /\  ( u  e.  J  /\  v  e.  J ) )  /\  ( x  e.  u  /\  y  e.  v
) )  ->  (
u  i^i  v )  =/=  (/) )
1613, 15sylanl1 682 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Haus  /\  ( ( x  e.  ( J  fLim  F )  /\  y  e.  ( J  fLim  F
) )  /\  x  =/=  y ) )  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
x  e.  u  /\  y  e.  v )
)  ->  ( u  i^i  v )  =/=  (/) )
1716a1d 25 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Haus  /\  ( ( x  e.  ( J  fLim  F )  /\  y  e.  ( J  fLim  F
) )  /\  x  =/=  y ) )  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
x  e.  u  /\  y  e.  v )
)  ->  ( x  =/=  y  ->  ( u  i^i  v )  =/=  (/) ) )
1817necon4d 2818 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Haus  /\  ( ( x  e.  ( J  fLim  F )  /\  y  e.  ( J  fLim  F
) )  /\  x  =/=  y ) )  /\  ( u  e.  J  /\  v  e.  J
) )  /\  (
x  e.  u  /\  y  e.  v )
)  ->  ( (
u  i^i  v )  =  (/)  ->  x  =  y ) )
1918expimpd 629 . . . . . . . . . 10  |-  ( ( ( J  e.  Haus  /\  ( ( x  e.  ( J  fLim  F
)  /\  y  e.  ( J  fLim  F ) )  /\  x  =/=  y ) )  /\  ( u  e.  J  /\  v  e.  J
) )  ->  (
( ( x  e.  u  /\  y  e.  v )  /\  (
u  i^i  v )  =  (/) )  ->  x  =  y ) )
2012, 19syl5bi 232 . . . . . . . . 9  |-  ( ( ( J  e.  Haus  /\  ( ( x  e.  ( J  fLim  F
)  /\  y  e.  ( J  fLim  F ) )  /\  x  =/=  y ) )  /\  ( u  e.  J  /\  v  e.  J
) )  ->  (
( x  e.  u  /\  y  e.  v  /\  ( u  i^i  v
)  =  (/) )  ->  x  =  y )
)
2120rexlimdvva 3038 . . . . . . . 8  |-  ( ( J  e.  Haus  /\  (
( x  e.  ( J  fLim  F )  /\  y  e.  ( J  fLim  F ) )  /\  x  =/=  y
) )  ->  ( E. u  e.  J  E. v  e.  J  ( x  e.  u  /\  y  e.  v  /\  ( u  i^i  v
)  =  (/) )  ->  x  =  y )
)
2211, 21mpd 15 . . . . . . 7  |-  ( ( J  e.  Haus  /\  (
( x  e.  ( J  fLim  F )  /\  y  e.  ( J  fLim  F ) )  /\  x  =/=  y
) )  ->  x  =  y )
2322expr 643 . . . . . 6  |-  ( ( J  e.  Haus  /\  (
x  e.  ( J 
fLim  F )  /\  y  e.  ( J  fLim  F
) ) )  -> 
( x  =/=  y  ->  x  =  y ) )
2423necon1bd 2812 . . . . 5  |-  ( ( J  e.  Haus  /\  (
x  e.  ( J 
fLim  F )  /\  y  e.  ( J  fLim  F
) ) )  -> 
( -.  x  =  y  ->  x  =  y ) )
2524pm2.18d 124 . . . 4  |-  ( ( J  e.  Haus  /\  (
x  e.  ( J 
fLim  F )  /\  y  e.  ( J  fLim  F
) ) )  ->  x  =  y )
2625ex 450 . . 3  |-  ( J  e.  Haus  ->  ( ( x  e.  ( J 
fLim  F )  /\  y  e.  ( J  fLim  F
) )  ->  x  =  y ) )
2726alrimivv 1856 . 2  |-  ( J  e.  Haus  ->  A. x A. y ( ( x  e.  ( J  fLim  F )  /\  y  e.  ( J  fLim  F
) )  ->  x  =  y ) )
28 eleq1 2689 . . 3  |-  ( x  =  y  ->  (
x  e.  ( J 
fLim  F )  <->  y  e.  ( J  fLim  F ) ) )
2928mo4 2517 . 2  |-  ( E* x  x  e.  ( J  fLim  F )  <->  A. x A. y ( ( x  e.  ( J  fLim  F )  /\  y  e.  ( J  fLim  F ) )  ->  x  =  y ) )
3027, 29sylibr 224 1  |-  ( J  e.  Haus  ->  E* x  x  e.  ( J  fLim  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483    e. wcel 1990   E*wmo 2471    =/= wne 2794   E.wrex 2913    i^i cin 3573   (/)c0 3915   U.cuni 4436  (class class class)co 6650   Hauscha 21112    fLim cflim 21738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-fbas 19743  df-top 20699  df-nei 20902  df-haus 21119  df-fil 21650  df-flim 21743
This theorem is referenced by:  hausflim  21785  hausflf  21801  cmetss  23113  minveclem4a  23201
  Copyright terms: Public domain W3C validator