| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hoaddcomi | Structured version Visualization version Unicode version | ||
| Description: Commutativity of sum of Hilbert space operators. (Contributed by NM, 15-Nov-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hoeq.1 |
|
| hoeq.2 |
|
| Ref | Expression |
|---|---|
| hoaddcomi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hoeq.1 |
. . . . . 6
| |
| 2 | 1 | ffvelrni 6358 |
. . . . 5
|
| 3 | hoeq.2 |
. . . . . 6
| |
| 4 | 3 | ffvelrni 6358 |
. . . . 5
|
| 5 | ax-hvcom 27858 |
. . . . 5
| |
| 6 | 2, 4, 5 | syl2anc 693 |
. . . 4
|
| 7 | hosval 28599 |
. . . . 5
| |
| 8 | 1, 3, 7 | mp3an12 1414 |
. . . 4
|
| 9 | hosval 28599 |
. . . . 5
| |
| 10 | 3, 1, 9 | mp3an12 1414 |
. . . 4
|
| 11 | 6, 8, 10 | 3eqtr4d 2666 |
. . 3
|
| 12 | 11 | rgen 2922 |
. 2
|
| 13 | 1, 3 | hoaddcli 28627 |
. . 3
|
| 14 | 3, 1 | hoaddcli 28627 |
. . 3
|
| 15 | 13, 14 | hoeqi 28620 |
. 2
|
| 16 | 12, 15 | mpbi 220 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-hilex 27856 ax-hfvadd 27857 ax-hvcom 27858 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-map 7859 df-hosum 28589 |
| This theorem is referenced by: hoaddcom 28633 hoadd12i 28636 hoadd32i 28637 hoaddsubi 28680 hosd1i 28681 hosubeq0i 28685 |
| Copyright terms: Public domain | W3C validator |