HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoaddcomi Structured version   Visualization version   Unicode version

Theorem hoaddcomi 28631
Description: Commutativity of sum of Hilbert space operators. (Contributed by NM, 15-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
hoeq.1  |-  S : ~H
--> ~H
hoeq.2  |-  T : ~H
--> ~H
Assertion
Ref Expression
hoaddcomi  |-  ( S 
+op  T )  =  ( T  +op  S
)

Proof of Theorem hoaddcomi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 hoeq.1 . . . . . 6  |-  S : ~H
--> ~H
21ffvelrni 6358 . . . . 5  |-  ( x  e.  ~H  ->  ( S `  x )  e.  ~H )
3 hoeq.2 . . . . . 6  |-  T : ~H
--> ~H
43ffvelrni 6358 . . . . 5  |-  ( x  e.  ~H  ->  ( T `  x )  e.  ~H )
5 ax-hvcom 27858 . . . . 5  |-  ( ( ( S `  x
)  e.  ~H  /\  ( T `  x )  e.  ~H )  -> 
( ( S `  x )  +h  ( T `  x )
)  =  ( ( T `  x )  +h  ( S `  x ) ) )
62, 4, 5syl2anc 693 . . . 4  |-  ( x  e.  ~H  ->  (
( S `  x
)  +h  ( T `
 x ) )  =  ( ( T `
 x )  +h  ( S `  x
) ) )
7 hosval 28599 . . . . 5  |-  ( ( S : ~H --> ~H  /\  T : ~H --> ~H  /\  x  e.  ~H )  ->  ( ( S  +op  T ) `  x )  =  ( ( S `
 x )  +h  ( T `  x
) ) )
81, 3, 7mp3an12 1414 . . . 4  |-  ( x  e.  ~H  ->  (
( S  +op  T
) `  x )  =  ( ( S `
 x )  +h  ( T `  x
) ) )
9 hosval 28599 . . . . 5  |-  ( ( T : ~H --> ~H  /\  S : ~H --> ~H  /\  x  e.  ~H )  ->  ( ( T  +op  S ) `  x )  =  ( ( T `
 x )  +h  ( S `  x
) ) )
103, 1, 9mp3an12 1414 . . . 4  |-  ( x  e.  ~H  ->  (
( T  +op  S
) `  x )  =  ( ( T `
 x )  +h  ( S `  x
) ) )
116, 8, 103eqtr4d 2666 . . 3  |-  ( x  e.  ~H  ->  (
( S  +op  T
) `  x )  =  ( ( T 
+op  S ) `  x ) )
1211rgen 2922 . 2  |-  A. x  e.  ~H  ( ( S 
+op  T ) `  x )  =  ( ( T  +op  S
) `  x )
131, 3hoaddcli 28627 . . 3  |-  ( S 
+op  T ) : ~H --> ~H
143, 1hoaddcli 28627 . . 3  |-  ( T 
+op  S ) : ~H --> ~H
1513, 14hoeqi 28620 . 2  |-  ( A. x  e.  ~H  (
( S  +op  T
) `  x )  =  ( ( T 
+op  S ) `  x )  <->  ( S  +op  T )  =  ( T  +op  S ) )
1612, 15mpbi 220 1  |-  ( S 
+op  T )  =  ( T  +op  S
)
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483    e. wcel 1990   A.wral 2912   -->wf 5884   ` cfv 5888  (class class class)co 6650   ~Hchil 27776    +h cva 27777    +op chos 27795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-hilex 27856  ax-hfvadd 27857  ax-hvcom 27858
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-hosum 28589
This theorem is referenced by:  hoaddcom  28633  hoadd12i  28636  hoadd32i  28637  hoaddsubi  28680  hosd1i  28681  hosubeq0i  28685
  Copyright terms: Public domain W3C validator