Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hvmapval Structured version   Visualization version   Unicode version

Theorem hvmapval 37049
Description: Value of map from nonzero vectors to nonzero functionals in the closed kernel dual space. (Contributed by NM, 23-Mar-2015.)
Hypotheses
Ref Expression
hvmapval.h  |-  H  =  ( LHyp `  K
)
hvmapval.u  |-  U  =  ( ( DVecH `  K
) `  W )
hvmapval.o  |-  O  =  ( ( ocH `  K
) `  W )
hvmapval.v  |-  V  =  ( Base `  U
)
hvmapval.p  |-  .+  =  ( +g  `  U )
hvmapval.t  |-  .x.  =  ( .s `  U )
hvmapval.z  |-  .0.  =  ( 0g `  U )
hvmapval.s  |-  S  =  (Scalar `  U )
hvmapval.r  |-  R  =  ( Base `  S
)
hvmapval.m  |-  M  =  ( (HVMap `  K
) `  W )
hvmapval.k  |-  ( ph  ->  ( K  e.  A  /\  W  e.  H
) )
hvmapval.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
Assertion
Ref Expression
hvmapval  |-  ( ph  ->  ( M `  X
)  =  ( v  e.  V  |->  ( iota_ j  e.  R  E. t  e.  ( O `  { X } ) v  =  ( t  .+  (
j  .x.  X )
) ) ) )
Distinct variable groups:    t, j,
v, K    t, W    t, O    R, j    j, W, v    v, V    j, X, t, v
Allowed substitution hints:    ph( v, t, j)    A( v, t, j)    .+ ( v, t, j)    R( v, t)    S( v, t, j)    .x. ( v, t, j)    U( v, t, j)    H( v, t, j)    M( v, t, j)    O( v, j)    V( t, j)    .0. ( v, t, j)

Proof of Theorem hvmapval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 hvmapval.h . . . 4  |-  H  =  ( LHyp `  K
)
2 hvmapval.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
3 hvmapval.o . . . 4  |-  O  =  ( ( ocH `  K
) `  W )
4 hvmapval.v . . . 4  |-  V  =  ( Base `  U
)
5 hvmapval.p . . . 4  |-  .+  =  ( +g  `  U )
6 hvmapval.t . . . 4  |-  .x.  =  ( .s `  U )
7 hvmapval.z . . . 4  |-  .0.  =  ( 0g `  U )
8 hvmapval.s . . . 4  |-  S  =  (Scalar `  U )
9 hvmapval.r . . . 4  |-  R  =  ( Base `  S
)
10 hvmapval.m . . . 4  |-  M  =  ( (HVMap `  K
) `  W )
11 hvmapval.k . . . 4  |-  ( ph  ->  ( K  e.  A  /\  W  e.  H
) )
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11hvmapfval 37048 . . 3  |-  ( ph  ->  M  =  ( x  e.  ( V  \  {  .0.  } )  |->  ( v  e.  V  |->  (
iota_ j  e.  R  E. t  e.  ( O `  { x } ) v  =  ( t  .+  (
j  .x.  x )
) ) ) ) )
1312fveq1d 6193 . 2  |-  ( ph  ->  ( M `  X
)  =  ( ( x  e.  ( V 
\  {  .0.  }
)  |->  ( v  e.  V  |->  ( iota_ j  e.  R  E. t  e.  ( O `  {
x } ) v  =  ( t  .+  ( j  .x.  x
) ) ) ) ) `  X ) )
14 hvmapval.x . . 3  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
15 fvex 6201 . . . . 5  |-  ( Base `  U )  e.  _V
164, 15eqeltri 2697 . . . 4  |-  V  e. 
_V
1716mptex 6486 . . 3  |-  ( v  e.  V  |->  ( iota_ j  e.  R  E. t  e.  ( O `  { X } ) v  =  ( t  .+  (
j  .x.  X )
) ) )  e. 
_V
18 sneq 4187 . . . . . . . 8  |-  ( x  =  X  ->  { x }  =  { X } )
1918fveq2d 6195 . . . . . . 7  |-  ( x  =  X  ->  ( O `  { x } )  =  ( O `  { X } ) )
20 oveq2 6658 . . . . . . . . 9  |-  ( x  =  X  ->  (
j  .x.  x )  =  ( j  .x.  X ) )
2120oveq2d 6666 . . . . . . . 8  |-  ( x  =  X  ->  (
t  .+  ( j  .x.  x ) )  =  ( t  .+  (
j  .x.  X )
) )
2221eqeq2d 2632 . . . . . . 7  |-  ( x  =  X  ->  (
v  =  ( t 
.+  ( j  .x.  x ) )  <->  v  =  ( t  .+  (
j  .x.  X )
) ) )
2319, 22rexeqbidv 3153 . . . . . 6  |-  ( x  =  X  ->  ( E. t  e.  ( O `  { x } ) v  =  ( t  .+  (
j  .x.  x )
)  <->  E. t  e.  ( O `  { X } ) v  =  ( t  .+  (
j  .x.  X )
) ) )
2423riotabidv 6613 . . . . 5  |-  ( x  =  X  ->  ( iota_ j  e.  R  E. t  e.  ( O `  { x } ) v  =  ( t 
.+  ( j  .x.  x ) ) )  =  ( iota_ j  e.  R  E. t  e.  ( O `  { X } ) v  =  ( t  .+  (
j  .x.  X )
) ) )
2524mpteq2dv 4745 . . . 4  |-  ( x  =  X  ->  (
v  e.  V  |->  (
iota_ j  e.  R  E. t  e.  ( O `  { x } ) v  =  ( t  .+  (
j  .x.  x )
) ) )  =  ( v  e.  V  |->  ( iota_ j  e.  R  E. t  e.  ( O `  { X } ) v  =  ( t  .+  (
j  .x.  X )
) ) ) )
26 eqid 2622 . . . 4  |-  ( x  e.  ( V  \  {  .0.  } )  |->  ( v  e.  V  |->  (
iota_ j  e.  R  E. t  e.  ( O `  { x } ) v  =  ( t  .+  (
j  .x.  x )
) ) ) )  =  ( x  e.  ( V  \  {  .0.  } )  |->  ( v  e.  V  |->  ( iota_ j  e.  R  E. t  e.  ( O `  {
x } ) v  =  ( t  .+  ( j  .x.  x
) ) ) ) )
2725, 26fvmptg 6280 . . 3  |-  ( ( X  e.  ( V 
\  {  .0.  }
)  /\  ( v  e.  V  |->  ( iota_ j  e.  R  E. t  e.  ( O `  { X } ) v  =  ( t  .+  (
j  .x.  X )
) ) )  e. 
_V )  ->  (
( x  e.  ( V  \  {  .0.  } )  |->  ( v  e.  V  |->  ( iota_ j  e.  R  E. t  e.  ( O `  {
x } ) v  =  ( t  .+  ( j  .x.  x
) ) ) ) ) `  X )  =  ( v  e.  V  |->  ( iota_ j  e.  R  E. t  e.  ( O `  { X } ) v  =  ( t  .+  (
j  .x.  X )
) ) ) )
2814, 17, 27sylancl 694 . 2  |-  ( ph  ->  ( ( x  e.  ( V  \  {  .0.  } )  |->  ( v  e.  V  |->  ( iota_ j  e.  R  E. t  e.  ( O `  {
x } ) v  =  ( t  .+  ( j  .x.  x
) ) ) ) ) `  X )  =  ( v  e.  V  |->  ( iota_ j  e.  R  E. t  e.  ( O `  { X } ) v  =  ( t  .+  (
j  .x.  X )
) ) ) )
2913, 28eqtrd 2656 1  |-  ( ph  ->  ( M `  X
)  =  ( v  e.  V  |->  ( iota_ j  e.  R  E. t  e.  ( O `  { X } ) v  =  ( t  .+  (
j  .x.  X )
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200    \ cdif 3571   {csn 4177    |-> cmpt 4729   ` cfv 5888   iota_crio 6610  (class class class)co 6650   Basecbs 15857   +g cplusg 15941  Scalarcsca 15944   .scvsca 15945   0gc0g 16100   LHypclh 35270   DVecHcdvh 36367   ocHcoch 36636  HVMapchvm 37045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-hvmap 37046
This theorem is referenced by:  hvmapvalvalN  37050  hvmapidN  37051  hdmapevec2  37128
  Copyright terms: Public domain W3C validator