HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  idcnop Structured version   Visualization version   Unicode version

Theorem idcnop 28840
Description: The identity function (restricted to Hilbert space) is a continuous operator. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
idcnop  |-  (  _I  |`  ~H )  e.  ContOp

Proof of Theorem idcnop
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 6174 . . 3  |-  (  _I  |`  ~H ) : ~H -1-1-onto-> ~H
2 f1of 6137 . . 3  |-  ( (  _I  |`  ~H ) : ~H -1-1-onto-> ~H  ->  (  _I  |` 
~H ) : ~H --> ~H )
31, 2ax-mp 5 . 2  |-  (  _I  |`  ~H ) : ~H --> ~H
4 id 22 . . . 4  |-  ( y  e.  RR+  ->  y  e.  RR+ )
5 fvresi 6439 . . . . . . . . 9  |-  ( w  e.  ~H  ->  (
(  _I  |`  ~H ) `  w )  =  w )
6 fvresi 6439 . . . . . . . . 9  |-  ( x  e.  ~H  ->  (
(  _I  |`  ~H ) `  x )  =  x )
75, 6oveqan12rd 6670 . . . . . . . 8  |-  ( ( x  e.  ~H  /\  w  e.  ~H )  ->  ( ( (  _I  |`  ~H ) `  w
)  -h  ( (  _I  |`  ~H ) `  x ) )  =  ( w  -h  x
) )
87fveq2d 6195 . . . . . . 7  |-  ( ( x  e.  ~H  /\  w  e.  ~H )  ->  ( normh `  ( (
(  _I  |`  ~H ) `  w )  -h  (
(  _I  |`  ~H ) `  x ) ) )  =  ( normh `  (
w  -h  x ) ) )
98breq1d 4663 . . . . . 6  |-  ( ( x  e.  ~H  /\  w  e.  ~H )  ->  ( ( normh `  (
( (  _I  |`  ~H ) `  w )  -h  (
(  _I  |`  ~H ) `  x ) ) )  <  y  <->  ( normh `  ( w  -h  x
) )  <  y
) )
109biimprd 238 . . . . 5  |-  ( ( x  e.  ~H  /\  w  e.  ~H )  ->  ( ( normh `  (
w  -h  x ) )  <  y  -> 
( normh `  ( (
(  _I  |`  ~H ) `  w )  -h  (
(  _I  |`  ~H ) `  x ) ) )  <  y ) )
1110ralrimiva 2966 . . . 4  |-  ( x  e.  ~H  ->  A. w  e.  ~H  ( ( normh `  ( w  -h  x
) )  <  y  ->  ( normh `  ( (
(  _I  |`  ~H ) `  w )  -h  (
(  _I  |`  ~H ) `  x ) ) )  <  y ) )
12 breq2 4657 . . . . . . 7  |-  ( z  =  y  ->  (
( normh `  ( w  -h  x ) )  < 
z  <->  ( normh `  (
w  -h  x ) )  <  y ) )
1312imbi1d 331 . . . . . 6  |-  ( z  =  y  ->  (
( ( normh `  (
w  -h  x ) )  <  z  -> 
( normh `  ( (
(  _I  |`  ~H ) `  w )  -h  (
(  _I  |`  ~H ) `  x ) ) )  <  y )  <->  ( ( normh `  ( w  -h  x ) )  < 
y  ->  ( normh `  ( ( (  _I  |`  ~H ) `  w
)  -h  ( (  _I  |`  ~H ) `  x ) ) )  <  y ) ) )
1413ralbidv 2986 . . . . 5  |-  ( z  =  y  ->  ( A. w  e.  ~H  ( ( normh `  (
w  -h  x ) )  <  z  -> 
( normh `  ( (
(  _I  |`  ~H ) `  w )  -h  (
(  _I  |`  ~H ) `  x ) ) )  <  y )  <->  A. w  e.  ~H  ( ( normh `  ( w  -h  x
) )  <  y  ->  ( normh `  ( (
(  _I  |`  ~H ) `  w )  -h  (
(  _I  |`  ~H ) `  x ) ) )  <  y ) ) )
1514rspcev 3309 . . . 4  |-  ( ( y  e.  RR+  /\  A. w  e.  ~H  (
( normh `  ( w  -h  x ) )  < 
y  ->  ( normh `  ( ( (  _I  |`  ~H ) `  w
)  -h  ( (  _I  |`  ~H ) `  x ) ) )  <  y ) )  ->  E. z  e.  RR+  A. w  e.  ~H  (
( normh `  ( w  -h  x ) )  < 
z  ->  ( normh `  ( ( (  _I  |`  ~H ) `  w
)  -h  ( (  _I  |`  ~H ) `  x ) ) )  <  y ) )
164, 11, 15syl2anr 495 . . 3  |-  ( ( x  e.  ~H  /\  y  e.  RR+ )  ->  E. z  e.  RR+  A. w  e.  ~H  ( ( normh `  ( w  -h  x
) )  <  z  ->  ( normh `  ( (
(  _I  |`  ~H ) `  w )  -h  (
(  _I  |`  ~H ) `  x ) ) )  <  y ) )
1716rgen2 2975 . 2  |-  A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  (
( normh `  ( w  -h  x ) )  < 
z  ->  ( normh `  ( ( (  _I  |`  ~H ) `  w
)  -h  ( (  _I  |`  ~H ) `  x ) ) )  <  y )
18 elcnop 28716 . 2  |-  ( (  _I  |`  ~H )  e.  ContOp 
<->  ( (  _I  |`  ~H ) : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  (
( normh `  ( w  -h  x ) )  < 
z  ->  ( normh `  ( ( (  _I  |`  ~H ) `  w
)  -h  ( (  _I  |`  ~H ) `  x ) ) )  <  y ) ) )
193, 17, 18mpbir2an 955 1  |-  (  _I  |`  ~H )  e.  ContOp
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    e. wcel 1990   A.wral 2912   E.wrex 2913   class class class wbr 4653    _I cid 5023    |` cres 5116   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    < clt 10074   RR+crp 11832   ~Hchil 27776   normhcno 27780    -h cmv 27782   ContOpccop 27803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-hilex 27856
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-cnop 28699
This theorem is referenced by:  nmcopex  28888  nmcoplb  28889
  Copyright terms: Public domain W3C validator