MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvimacnvi Structured version   Visualization version   Unicode version

Theorem fvimacnvi 6331
Description: A member of a preimage is a function value argument. (Contributed by NM, 4-May-2007.)
Assertion
Ref Expression
fvimacnvi  |-  ( ( Fun  F  /\  A  e.  ( `' F " B ) )  -> 
( F `  A
)  e.  B )

Proof of Theorem fvimacnvi
StepHypRef Expression
1 snssi 4339 . . 3  |-  ( A  e.  ( `' F " B )  ->  { A }  C_  ( `' F " B ) )
2 funimass2 5972 . . 3  |-  ( ( Fun  F  /\  { A }  C_  ( `' F " B ) )  ->  ( F " { A } ) 
C_  B )
31, 2sylan2 491 . 2  |-  ( ( Fun  F  /\  A  e.  ( `' F " B ) )  -> 
( F " { A } )  C_  B
)
4 fvex 6201 . . . 4  |-  ( F `
 A )  e. 
_V
54snss 4316 . . 3  |-  ( ( F `  A )  e.  B  <->  { ( F `  A ) }  C_  B )
6 cnvimass 5485 . . . . . 6  |-  ( `' F " B ) 
C_  dom  F
76sseli 3599 . . . . 5  |-  ( A  e.  ( `' F " B )  ->  A  e.  dom  F )
8 funfn 5918 . . . . . 6  |-  ( Fun 
F  <->  F  Fn  dom  F )
9 fnsnfv 6258 . . . . . 6  |-  ( ( F  Fn  dom  F  /\  A  e.  dom  F )  ->  { ( F `  A ) }  =  ( F " { A } ) )
108, 9sylanb 489 . . . . 5  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  { ( F `  A ) }  =  ( F " { A } ) )
117, 10sylan2 491 . . . 4  |-  ( ( Fun  F  /\  A  e.  ( `' F " B ) )  ->  { ( F `  A ) }  =  ( F " { A } ) )
1211sseq1d 3632 . . 3  |-  ( ( Fun  F  /\  A  e.  ( `' F " B ) )  -> 
( { ( F `
 A ) } 
C_  B  <->  ( F " { A } ) 
C_  B ) )
135, 12syl5bb 272 . 2  |-  ( ( Fun  F  /\  A  e.  ( `' F " B ) )  -> 
( ( F `  A )  e.  B  <->  ( F " { A } )  C_  B
) )
143, 13mpbird 247 1  |-  ( ( Fun  F  /\  A  e.  ( `' F " B ) )  -> 
( F `  A
)  e.  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574   {csn 4177   `'ccnv 5113   dom cdm 5114   "cima 5117   Fun wfun 5882    Fn wfn 5883   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  fvimacnv  6332  elpreima  6337  iinpreima  6345  lmhmpreima  19048  mpfind  19536  ofco2  20257  carsggect  30380
  Copyright terms: Public domain W3C validator