| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imainrect | Structured version Visualization version Unicode version | ||
| Description: Image of a relation restricted to a rectangular region. (Contributed by Stefan O'Rear, 19-Feb-2015.) |
| Ref | Expression |
|---|---|
| imainrect |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5126 |
. . 3
| |
| 2 | 1 | rneqi 5352 |
. 2
|
| 3 | df-ima 5127 |
. 2
| |
| 4 | df-ima 5127 |
. . . . 5
| |
| 5 | df-res 5126 |
. . . . . 6
| |
| 6 | 5 | rneqi 5352 |
. . . . 5
|
| 7 | 4, 6 | eqtri 2644 |
. . . 4
|
| 8 | 7 | ineq1i 3810 |
. . 3
|
| 9 | cnvin 5540 |
. . . . . 6
| |
| 10 | inxp 5254 |
. . . . . . . . . 10
| |
| 11 | inv1 3970 |
. . . . . . . . . . 11
| |
| 12 | incom 3805 |
. . . . . . . . . . . 12
| |
| 13 | inv1 3970 |
. . . . . . . . . . . 12
| |
| 14 | 12, 13 | eqtri 2644 |
. . . . . . . . . . 11
|
| 15 | 11, 14 | xpeq12i 5137 |
. . . . . . . . . 10
|
| 16 | 10, 15 | eqtr2i 2645 |
. . . . . . . . 9
|
| 17 | 16 | ineq2i 3811 |
. . . . . . . 8
|
| 18 | in32 3825 |
. . . . . . . 8
| |
| 19 | xpindir 5256 |
. . . . . . . . . . . 12
| |
| 20 | 19 | ineq2i 3811 |
. . . . . . . . . . 11
|
| 21 | inass 3823 |
. . . . . . . . . . 11
| |
| 22 | 20, 21 | eqtr4i 2647 |
. . . . . . . . . 10
|
| 23 | 22 | ineq1i 3810 |
. . . . . . . . 9
|
| 24 | inass 3823 |
. . . . . . . . 9
| |
| 25 | 23, 24 | eqtri 2644 |
. . . . . . . 8
|
| 26 | 17, 18, 25 | 3eqtr4i 2654 |
. . . . . . 7
|
| 27 | 26 | cnveqi 5297 |
. . . . . 6
|
| 28 | df-res 5126 |
. . . . . . 7
| |
| 29 | cnvxp 5551 |
. . . . . . . 8
| |
| 30 | 29 | ineq2i 3811 |
. . . . . . 7
|
| 31 | 28, 30 | eqtr4i 2647 |
. . . . . 6
|
| 32 | 9, 27, 31 | 3eqtr4ri 2655 |
. . . . 5
|
| 33 | 32 | dmeqi 5325 |
. . . 4
|
| 34 | incom 3805 |
. . . . 5
| |
| 35 | dmres 5419 |
. . . . 5
| |
| 36 | df-rn 5125 |
. . . . . 6
| |
| 37 | 36 | ineq1i 3810 |
. . . . 5
|
| 38 | 34, 35, 37 | 3eqtr4ri 2655 |
. . . 4
|
| 39 | df-rn 5125 |
. . . 4
| |
| 40 | 33, 38, 39 | 3eqtr4ri 2655 |
. . 3
|
| 41 | 8, 40 | eqtr4i 2647 |
. 2
|
| 42 | 2, 3, 41 | 3eqtr4i 2654 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 |
| This theorem is referenced by: ecinxp 7822 marypha1lem 8339 |
| Copyright terms: Public domain | W3C validator |