Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imarnf1pr Structured version   Visualization version   Unicode version

Theorem imarnf1pr 41301
Description: The image of the range of a function  F under a function  E if  F is a function of a pair into the domain of  E. (Contributed by Alexander van der Vekens, 2-Feb-2018.)
Assertion
Ref Expression
imarnf1pr  |-  ( ( X  e.  V  /\  Y  e.  W )  ->  ( ( ( F : { X ,  Y } --> dom  E  /\  E : dom  E --> R )  /\  ( ( E `
 ( F `  X ) )  =  A  /\  ( E `
 ( F `  Y ) )  =  B ) )  -> 
( E " ran  F )  =  { A ,  B } ) )

Proof of Theorem imarnf1pr
StepHypRef Expression
1 ffn 6045 . . . . . . . . 9  |-  ( E : dom  E --> R  ->  E  Fn  dom  E )
21adantl 482 . . . . . . . 8  |-  ( ( F : { X ,  Y } --> dom  E  /\  E : dom  E --> R )  ->  E  Fn  dom  E )
32adantr 481 . . . . . . 7  |-  ( ( ( F : { X ,  Y } --> dom  E  /\  E : dom  E --> R )  /\  ( X  e.  V  /\  Y  e.  W
) )  ->  E  Fn  dom  E )
4 simpll 790 . . . . . . . 8  |-  ( ( ( F : { X ,  Y } --> dom  E  /\  E : dom  E --> R )  /\  ( X  e.  V  /\  Y  e.  W
) )  ->  F : { X ,  Y }
--> dom  E )
5 prid1g 4295 . . . . . . . . . 10  |-  ( X  e.  V  ->  X  e.  { X ,  Y } )
65adantr 481 . . . . . . . . 9  |-  ( ( X  e.  V  /\  Y  e.  W )  ->  X  e.  { X ,  Y } )
76adantl 482 . . . . . . . 8  |-  ( ( ( F : { X ,  Y } --> dom  E  /\  E : dom  E --> R )  /\  ( X  e.  V  /\  Y  e.  W
) )  ->  X  e.  { X ,  Y } )
84, 7ffvelrnd 6360 . . . . . . 7  |-  ( ( ( F : { X ,  Y } --> dom  E  /\  E : dom  E --> R )  /\  ( X  e.  V  /\  Y  e.  W
) )  ->  ( F `  X )  e.  dom  E )
9 prid2g 4296 . . . . . . . . 9  |-  ( Y  e.  W  ->  Y  e.  { X ,  Y } )
109ad2antll 765 . . . . . . . 8  |-  ( ( ( F : { X ,  Y } --> dom  E  /\  E : dom  E --> R )  /\  ( X  e.  V  /\  Y  e.  W
) )  ->  Y  e.  { X ,  Y } )
114, 10ffvelrnd 6360 . . . . . . 7  |-  ( ( ( F : { X ,  Y } --> dom  E  /\  E : dom  E --> R )  /\  ( X  e.  V  /\  Y  e.  W
) )  ->  ( F `  Y )  e.  dom  E )
12 fnimapr 6262 . . . . . . 7  |-  ( ( E  Fn  dom  E  /\  ( F `  X
)  e.  dom  E  /\  ( F `  Y
)  e.  dom  E
)  ->  ( E " { ( F `  X ) ,  ( F `  Y ) } )  =  {
( E `  ( F `  X )
) ,  ( E `
 ( F `  Y ) ) } )
133, 8, 11, 12syl3anc 1326 . . . . . 6  |-  ( ( ( F : { X ,  Y } --> dom  E  /\  E : dom  E --> R )  /\  ( X  e.  V  /\  Y  e.  W
) )  ->  ( E " { ( F `
 X ) ,  ( F `  Y
) } )  =  { ( E `  ( F `  X ) ) ,  ( E `
 ( F `  Y ) ) } )
1413ex 450 . . . . 5  |-  ( ( F : { X ,  Y } --> dom  E  /\  E : dom  E --> R )  ->  (
( X  e.  V  /\  Y  e.  W
)  ->  ( E " { ( F `  X ) ,  ( F `  Y ) } )  =  {
( E `  ( F `  X )
) ,  ( E `
 ( F `  Y ) ) } ) )
1514adantr 481 . . . 4  |-  ( ( ( F : { X ,  Y } --> dom  E  /\  E : dom  E --> R )  /\  ( ( E `  ( F `  X ) )  =  A  /\  ( E `  ( F `
 Y ) )  =  B ) )  ->  ( ( X  e.  V  /\  Y  e.  W )  ->  ( E " { ( F `
 X ) ,  ( F `  Y
) } )  =  { ( E `  ( F `  X ) ) ,  ( E `
 ( F `  Y ) ) } ) )
1615impcom 446 . . 3  |-  ( ( ( X  e.  V  /\  Y  e.  W
)  /\  ( ( F : { X ,  Y } --> dom  E  /\  E : dom  E --> R )  /\  ( ( E `
 ( F `  X ) )  =  A  /\  ( E `
 ( F `  Y ) )  =  B ) ) )  ->  ( E " { ( F `  X ) ,  ( F `  Y ) } )  =  {
( E `  ( F `  X )
) ,  ( E `
 ( F `  Y ) ) } )
17 ffn 6045 . . . . . . . . 9  |-  ( F : { X ,  Y } --> dom  E  ->  F  Fn  { X ,  Y } )
18 rnfdmpr 41300 . . . . . . . . 9  |-  ( ( X  e.  V  /\  Y  e.  W )  ->  ( F  Fn  { X ,  Y }  ->  ran  F  =  {
( F `  X
) ,  ( F `
 Y ) } ) )
1917, 18syl5com 31 . . . . . . . 8  |-  ( F : { X ,  Y } --> dom  E  ->  ( ( X  e.  V  /\  Y  e.  W
)  ->  ran  F  =  { ( F `  X ) ,  ( F `  Y ) } ) )
2019adantr 481 . . . . . . 7  |-  ( ( F : { X ,  Y } --> dom  E  /\  E : dom  E --> R )  ->  (
( X  e.  V  /\  Y  e.  W
)  ->  ran  F  =  { ( F `  X ) ,  ( F `  Y ) } ) )
2120adantr 481 . . . . . 6  |-  ( ( ( F : { X ,  Y } --> dom  E  /\  E : dom  E --> R )  /\  ( ( E `  ( F `  X ) )  =  A  /\  ( E `  ( F `
 Y ) )  =  B ) )  ->  ( ( X  e.  V  /\  Y  e.  W )  ->  ran  F  =  { ( F `
 X ) ,  ( F `  Y
) } ) )
2221impcom 446 . . . . 5  |-  ( ( ( X  e.  V  /\  Y  e.  W
)  /\  ( ( F : { X ,  Y } --> dom  E  /\  E : dom  E --> R )  /\  ( ( E `
 ( F `  X ) )  =  A  /\  ( E `
 ( F `  Y ) )  =  B ) ) )  ->  ran  F  =  { ( F `  X ) ,  ( F `  Y ) } )
2322eqcomd 2628 . . . 4  |-  ( ( ( X  e.  V  /\  Y  e.  W
)  /\  ( ( F : { X ,  Y } --> dom  E  /\  E : dom  E --> R )  /\  ( ( E `
 ( F `  X ) )  =  A  /\  ( E `
 ( F `  Y ) )  =  B ) ) )  ->  { ( F `
 X ) ,  ( F `  Y
) }  =  ran  F )
2423imaeq2d 5466 . . 3  |-  ( ( ( X  e.  V  /\  Y  e.  W
)  /\  ( ( F : { X ,  Y } --> dom  E  /\  E : dom  E --> R )  /\  ( ( E `
 ( F `  X ) )  =  A  /\  ( E `
 ( F `  Y ) )  =  B ) ) )  ->  ( E " { ( F `  X ) ,  ( F `  Y ) } )  =  ( E " ran  F
) )
25 preq12 4270 . . . 4  |-  ( ( ( E `  ( F `  X )
)  =  A  /\  ( E `  ( F `
 Y ) )  =  B )  ->  { ( E `  ( F `  X ) ) ,  ( E `
 ( F `  Y ) ) }  =  { A ,  B } )
2625ad2antll 765 . . 3  |-  ( ( ( X  e.  V  /\  Y  e.  W
)  /\  ( ( F : { X ,  Y } --> dom  E  /\  E : dom  E --> R )  /\  ( ( E `
 ( F `  X ) )  =  A  /\  ( E `
 ( F `  Y ) )  =  B ) ) )  ->  { ( E `
 ( F `  X ) ) ,  ( E `  ( F `  Y )
) }  =  { A ,  B }
)
2716, 24, 263eqtr3d 2664 . 2  |-  ( ( ( X  e.  V  /\  Y  e.  W
)  /\  ( ( F : { X ,  Y } --> dom  E  /\  E : dom  E --> R )  /\  ( ( E `
 ( F `  X ) )  =  A  /\  ( E `
 ( F `  Y ) )  =  B ) ) )  ->  ( E " ran  F )  =  { A ,  B }
)
2827ex 450 1  |-  ( ( X  e.  V  /\  Y  e.  W )  ->  ( ( ( F : { X ,  Y } --> dom  E  /\  E : dom  E --> R )  /\  ( ( E `
 ( F `  X ) )  =  A  /\  ( E `
 ( F `  Y ) )  =  B ) )  -> 
( E " ran  F )  =  { A ,  B } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cpr 4179   dom cdm 5114   ran crn 5115   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator