MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfub Structured version   Visualization version   Unicode version

Theorem cfub 9071
Description: An upper bound on cofinality. (Contributed by NM, 25-Apr-2004.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
cfub  |-  ( cf `  A )  C_  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  C_  U. y ) ) }
Distinct variable group:    x, y, A

Proof of Theorem cfub
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfval 9069 . . 3  |-  ( A  e.  On  ->  ( cf `  A )  = 
|^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) } )
2 dfss3 3592 . . . . . . . . 9  |-  ( A 
C_  U. y  <->  A. z  e.  A  z  e.  U. y )
3 ssel 3597 . . . . . . . . . . . . . . . 16  |-  ( y 
C_  A  ->  (
w  e.  y  ->  w  e.  A )
)
4 onelon 5748 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  On  /\  w  e.  A )  ->  w  e.  On )
54ex 450 . . . . . . . . . . . . . . . 16  |-  ( A  e.  On  ->  (
w  e.  A  ->  w  e.  On )
)
63, 5sylan9r 690 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  On  /\  y  C_  A )  -> 
( w  e.  y  ->  w  e.  On ) )
7 onelss 5766 . . . . . . . . . . . . . . 15  |-  ( w  e.  On  ->  (
z  e.  w  -> 
z  C_  w )
)
86, 7syl6 35 . . . . . . . . . . . . . 14  |-  ( ( A  e.  On  /\  y  C_  A )  -> 
( w  e.  y  ->  ( z  e.  w  ->  z  C_  w ) ) )
98imdistand 728 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  y  C_  A )  -> 
( ( w  e.  y  /\  z  e.  w )  ->  (
w  e.  y  /\  z  C_  w ) ) )
109ancomsd 470 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  y  C_  A )  -> 
( ( z  e.  w  /\  w  e.  y )  ->  (
w  e.  y  /\  z  C_  w ) ) )
1110eximdv 1846 . . . . . . . . . . 11  |-  ( ( A  e.  On  /\  y  C_  A )  -> 
( E. w ( z  e.  w  /\  w  e.  y )  ->  E. w ( w  e.  y  /\  z  C_  w ) ) )
12 eluni 4439 . . . . . . . . . . 11  |-  ( z  e.  U. y  <->  E. w
( z  e.  w  /\  w  e.  y
) )
13 df-rex 2918 . . . . . . . . . . 11  |-  ( E. w  e.  y  z 
C_  w  <->  E. w
( w  e.  y  /\  z  C_  w
) )
1411, 12, 133imtr4g 285 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  y  C_  A )  -> 
( z  e.  U. y  ->  E. w  e.  y  z  C_  w )
)
1514ralimdv 2963 . . . . . . . . 9  |-  ( ( A  e.  On  /\  y  C_  A )  -> 
( A. z  e.  A  z  e.  U. y  ->  A. z  e.  A  E. w  e.  y 
z  C_  w )
)
162, 15syl5bi 232 . . . . . . . 8  |-  ( ( A  e.  On  /\  y  C_  A )  -> 
( A  C_  U. y  ->  A. z  e.  A  E. w  e.  y 
z  C_  w )
)
1716imdistanda 729 . . . . . . 7  |-  ( A  e.  On  ->  (
( y  C_  A  /\  A  C_  U. y
)  ->  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) )
1817anim2d 589 . . . . . 6  |-  ( A  e.  On  ->  (
( x  =  (
card `  y )  /\  ( y  C_  A  /\  A  C_  U. y
) )  ->  (
x  =  ( card `  y )  /\  (
y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) ) )
1918eximdv 1846 . . . . 5  |-  ( A  e.  On  ->  ( E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  C_  U. y ) )  ->  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) ) )
2019ss2abdv 3675 . . . 4  |-  ( A  e.  On  ->  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  C_  U. y ) ) } 
C_  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) } )
21 intss 4498 . . . 4  |-  ( { x  |  E. y
( x  =  (
card `  y )  /\  ( y  C_  A  /\  A  C_  U. y
) ) }  C_  { x  |  E. y
( x  =  (
card `  y )  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y 
z  C_  w )
) }  ->  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) } 
C_  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  C_  U. y ) ) } )
2220, 21syl 17 . . 3  |-  ( A  e.  On  ->  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) } 
C_  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  C_  U. y ) ) } )
231, 22eqsstrd 3639 . 2  |-  ( A  e.  On  ->  ( cf `  A )  C_  |^|
{ x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  C_  U. y ) ) } )
24 cff 9070 . . . . . 6  |-  cf : On
--> On
2524fdmi 6052 . . . . 5  |-  dom  cf  =  On
2625eleq2i 2693 . . . 4  |-  ( A  e.  dom  cf  <->  A  e.  On )
27 ndmfv 6218 . . . 4  |-  ( -.  A  e.  dom  cf  ->  ( cf `  A
)  =  (/) )
2826, 27sylnbir 321 . . 3  |-  ( -.  A  e.  On  ->  ( cf `  A )  =  (/) )
29 0ss 3972 . . 3  |-  (/)  C_  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  C_  U. y ) ) }
3028, 29syl6eqss 3655 . 2  |-  ( -.  A  e.  On  ->  ( cf `  A ) 
C_  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  C_  U. y ) ) } )
3123, 30pm2.61i 176 1  |-  ( cf `  A )  C_  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  C_  U. y ) ) }
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913    C_ wss 3574   (/)c0 3915   U.cuni 4436   |^|cint 4475   dom cdm 5114   Oncon0 5723   ` cfv 5888   cardccrd 8761   cfccf 8763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-card 8765  df-cf 8767
This theorem is referenced by:  cflm  9072  cf0  9073
  Copyright terms: Public domain W3C validator