Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem32 Structured version   Visualization version   Unicode version

Theorem poimirlem32 33441
Description: Lemma for poimir 33442, combining poimirlem28 33437, poimirlem30 33439, and poimirlem31 33440 to get Equation (1) of [Kulpa] p. 547. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0  |-  ( ph  ->  N  e.  NN )
poimir.i  |-  I  =  ( ( 0 [,] 1 )  ^m  (
1 ... N ) )
poimir.r  |-  R  =  ( Xt_ `  (
( 1 ... N
)  X.  { (
topGen `  ran  (,) ) } ) )
poimir.1  |-  ( ph  ->  F  e.  ( ( Rt  I )  Cn  R
) )
poimir.2  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  z  e.  I  /\  ( z `  n )  =  0 ) )  ->  (
( F `  z
) `  n )  <_  0 )
poimir.3  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  z  e.  I  /\  ( z `  n )  =  1 ) )  ->  0  <_  ( ( F `  z ) `  n
) )
Assertion
Ref Expression
poimirlem32  |-  ( ph  ->  E. c  e.  I  A. n  e.  (
1 ... N ) A. v  e.  ( Rt  I
) ( c  e.  v  ->  A. r  e.  {  <_  ,  `'  <_  } E. z  e.  v  0 r ( ( F `  z
) `  n )
) )
Distinct variable groups:    z, n, ph    n, F    n, N    ph, z    z, F    z, N    n, c, r, v, z, ph    F, c, r, v    I,
c, n, r, v, z    N, c, r, v    R, c, n, r, v, z

Proof of Theorem poimirlem32
Dummy variables  f 
i  j  k  m  p  q  s  g  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 poimir.0 . . . . . . 7  |-  ( ph  ->  N  e.  NN )
21adantr 481 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  N  e.  NN )
3 oveq1 6657 . . . . . . . . . . . . . 14  |-  ( p  =  ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  -> 
( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) )  =  ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) )
43fveq2d 6195 . . . . . . . . . . . . 13  |-  ( p  =  ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  -> 
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) )  =  ( F `
 ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  oF  /  ( ( 1 ... N )  X.  { k } ) ) ) )
54fveq1d 6193 . . . . . . . . . . . 12  |-  ( p  =  ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  -> 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  =  ( ( F `  ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
) )
65breq2d 4665 . . . . . . . . . . 11  |-  ( p  =  ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  -> 
( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  <->  0  <_  ( ( F `  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
) ) )
7 fveq1 6190 . . . . . . . . . . . 12  |-  ( p  =  ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  -> 
( p `  b
)  =  ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
) )
87neeq1d 2853 . . . . . . . . . . 11  |-  ( p  =  ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  -> 
( ( p `  b )  =/=  0  <->  ( ( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) )
96, 8anbi12d 747 . . . . . . . . . 10  |-  ( p  =  ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  -> 
( ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
)  <->  ( 0  <_ 
( ( F `  ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  oF  /  ( ( 1 ... N )  X.  { k } ) ) ) `  b )  /\  (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) ) )
109ralbidv 2986 . . . . . . . . 9  |-  ( p  =  ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  -> 
( A. b  e.  ( 1 ... a
) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
)  <->  A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) ) )
1110rabbidv 3189 . . . . . . . 8  |-  ( p  =  ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  ->  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a
) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) }  =  {
a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } )
1211uneq2d 3767 . . . . . . 7  |-  ( p  =  ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  -> 
( { 0 }  u.  { a  e.  ( 1 ... N
)  |  A. b  e.  ( 1 ... a
) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) } )  =  ( { 0 }  u.  { a  e.  ( 1 ... N
)  |  A. b  e.  ( 1 ... a
) ( 0  <_ 
( ( F `  ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  oF  /  ( ( 1 ... N )  X.  { k } ) ) ) `  b )  /\  (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) )
1312supeq1d 8352 . . . . . 6  |-  ( p  =  ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  ->  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) } ) ,  RR ,  <  )  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) )
141nnnn0d 11351 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  NN0 )
15 0elfz 12436 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  0  e.  ( 0 ... N
) )
1614, 15syl 17 . . . . . . . . . 10  |-  ( ph  ->  0  e.  ( 0 ... N ) )
1716snssd 4340 . . . . . . . . 9  |-  ( ph  ->  { 0 }  C_  ( 0 ... N
) )
18 ssrab2 3687 . . . . . . . . . . 11  |-  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) }  C_  ( 1 ... N )
19 1eluzge0 11732 . . . . . . . . . . . 12  |-  1  e.  ( ZZ>= `  0 )
20 fzss1 12380 . . . . . . . . . . . 12  |-  ( 1  e.  ( ZZ>= `  0
)  ->  ( 1 ... N )  C_  ( 0 ... N
) )
2119, 20ax-mp 5 . . . . . . . . . . 11  |-  ( 1 ... N )  C_  ( 0 ... N
)
2218, 21sstri 3612 . . . . . . . . . 10  |-  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) }  C_  ( 0 ... N )
2322a1i 11 . . . . . . . . 9  |-  ( ph  ->  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a
) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) }  C_  (
0 ... N ) )
2417, 23unssd 3789 . . . . . . . 8  |-  ( ph  ->  ( { 0 }  u.  { a  e.  ( 1 ... N
)  |  A. b  e.  ( 1 ... a
) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) } )  C_  ( 0 ... N
) )
25 ltso 10118 . . . . . . . . 9  |-  <  Or  RR
26 snfi 8038 . . . . . . . . . . 11  |-  { 0 }  e.  Fin
27 fzfi 12771 . . . . . . . . . . . 12  |-  ( 1 ... N )  e. 
Fin
28 rabfi 8185 . . . . . . . . . . . 12  |-  ( ( 1 ... N )  e.  Fin  ->  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) }  e.  Fin )
2927, 28ax-mp 5 . . . . . . . . . . 11  |-  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) }  e.  Fin
30 unfi 8227 . . . . . . . . . . 11  |-  ( ( { 0 }  e.  Fin  /\  { a  e.  ( 1 ... N
)  |  A. b  e.  ( 1 ... a
) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) }  e.  Fin )  ->  ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) } )  e.  Fin )
3126, 29, 30mp2an 708 . . . . . . . . . 10  |-  ( { 0 }  u.  {
a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
) } )  e. 
Fin
32 c0ex 10034 . . . . . . . . . . . 12  |-  0  e.  _V
3332snid 4208 . . . . . . . . . . 11  |-  0  e.  { 0 }
34 elun1 3780 . . . . . . . . . . 11  |-  ( 0  e.  { 0 }  ->  0  e.  ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
) } ) )
35 ne0i 3921 . . . . . . . . . . 11  |-  ( 0  e.  ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) } )  ->  ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
) } )  =/=  (/) )
3633, 34, 35mp2b 10 . . . . . . . . . 10  |-  ( { 0 }  u.  {
a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
) } )  =/=  (/)
37 0red 10041 . . . . . . . . . . . . 13  |-  ( (
ph  ->  N  e.  NN )  ->  0  e.  RR )
3837snssd 4340 . . . . . . . . . . . 12  |-  ( (
ph  ->  N  e.  NN )  ->  { 0 } 
C_  RR )
391, 38ax-mp 5 . . . . . . . . . . 11  |-  { 0 }  C_  RR
40 elfzelz 12342 . . . . . . . . . . . . . 14  |-  ( n  e.  ( 1 ... N )  ->  n  e.  ZZ )
4140ssriv 3607 . . . . . . . . . . . . 13  |-  ( 1 ... N )  C_  ZZ
42 zssre 11384 . . . . . . . . . . . . 13  |-  ZZ  C_  RR
4341, 42sstri 3612 . . . . . . . . . . . 12  |-  ( 1 ... N )  C_  RR
4418, 43sstri 3612 . . . . . . . . . . 11  |-  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) }  C_  RR
4539, 44unssi 3788 . . . . . . . . . 10  |-  ( { 0 }  u.  {
a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
) } )  C_  RR
4631, 36, 453pm3.2i 1239 . . . . . . . . 9  |-  ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
) } )  e. 
Fin  /\  ( {
0 }  u.  {
a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
) } )  =/=  (/)  /\  ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) } )  C_  RR )
47 fisupcl 8375 . . . . . . . . 9  |-  ( (  <  Or  RR  /\  ( ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) } )  e.  Fin  /\  ( { 0 }  u.  { a  e.  ( 1 ... N
)  |  A. b  e.  ( 1 ... a
) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) } )  =/=  (/)  /\  ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) } )  C_  RR ) )  ->  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) } ) ,  RR ,  <  )  e.  ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
) } ) )
4825, 46, 47mp2an 708 . . . . . . . 8  |-  sup (
( { 0 }  u.  { a  e.  ( 1 ... N
)  |  A. b  e.  ( 1 ... a
) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) } ) ,  RR ,  <  )  e.  ( { 0 }  u.  { a  e.  ( 1 ... N
)  |  A. b  e.  ( 1 ... a
) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) } )
49 ssel 3597 . . . . . . . 8  |-  ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
) } )  C_  ( 0 ... N
)  ->  ( sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) } ) ,  RR ,  <  )  e.  ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
) } )  ->  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) } ) ,  RR ,  <  )  e.  ( 0 ... N ) ) )
5024, 48, 49mpisyl 21 . . . . . . 7  |-  ( ph  ->  sup ( ( { 0 }  u.  {
a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
) } ) ,  RR ,  <  )  e.  ( 0 ... N
) )
5150ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  p : ( 1 ... N ) --> ( 0 ... k ) )  ->  sup ( ( { 0 }  u.  {
a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
) } ) ,  RR ,  <  )  e.  ( 0 ... N
) )
52 elfznn 12370 . . . . . . . . 9  |-  ( n  e.  ( 1 ... N )  ->  n  e.  NN )
53 nngt0 11049 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  0  <  n )
5453adantr 481 . . . . . . . . . . 11  |-  ( ( n  e.  NN  /\  ( p `  n
)  =  0 )  ->  0  <  n
)
55 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 )  ->  ( p `  b )  =/=  0
)
5655ralimi 2952 . . . . . . . . . . . . 13  |-  ( A. b  e.  ( 1 ... s ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 )  ->  A. b  e.  ( 1 ... s ) ( p `  b
)  =/=  0 )
57 elfznn 12370 . . . . . . . . . . . . . 14  |-  ( s  e.  ( 1 ... N )  ->  s  e.  NN )
58 nnre 11027 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  e.  NN  ->  n  e.  RR )
59 nnre 11027 . . . . . . . . . . . . . . . . . . . 20  |-  ( s  e.  NN  ->  s  e.  RR )
60 lenlt 10116 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  e.  RR  /\  s  e.  RR )  ->  ( n  <_  s  <->  -.  s  <  n ) )
6158, 59, 60syl2an 494 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  e.  NN  /\  s  e.  NN )  ->  ( n  <_  s  <->  -.  s  <  n ) )
62 elfz1b 12409 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  ( 1 ... s )  <->  ( n  e.  NN  /\  s  e.  NN  /\  n  <_ 
s ) )
6362biimpri 218 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  e.  NN  /\  s  e.  NN  /\  n  <_  s )  ->  n  e.  ( 1 ... s
) )
64633expia 1267 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  e.  NN  /\  s  e.  NN )  ->  ( n  <_  s  ->  n  e.  ( 1 ... s ) ) )
6561, 64sylbird 250 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  NN  /\  s  e.  NN )  ->  ( -.  s  < 
n  ->  n  e.  ( 1 ... s
) ) )
66 fveq2 6191 . . . . . . . . . . . . . . . . . . . . 21  |-  ( b  =  n  ->  (
p `  b )  =  ( p `  n ) )
6766eqeq1d 2624 . . . . . . . . . . . . . . . . . . . 20  |-  ( b  =  n  ->  (
( p `  b
)  =  0  <->  (
p `  n )  =  0 ) )
6867rspcev 3309 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  e.  ( 1 ... s )  /\  ( p `  n
)  =  0 )  ->  E. b  e.  ( 1 ... s ) ( p `  b
)  =  0 )
6968expcom 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( p `  n )  =  0  ->  (
n  e.  ( 1 ... s )  ->  E. b  e.  (
1 ... s ) ( p `  b )  =  0 ) )
7065, 69sylan9 689 . . . . . . . . . . . . . . . . 17  |-  ( ( ( n  e.  NN  /\  s  e.  NN )  /\  ( p `  n )  =  0 )  ->  ( -.  s  <  n  ->  E. b  e.  ( 1 ... s
) ( p `  b )  =  0 ) )
7170an32s 846 . . . . . . . . . . . . . . . 16  |-  ( ( ( n  e.  NN  /\  ( p `  n
)  =  0 )  /\  s  e.  NN )  ->  ( -.  s  <  n  ->  E. b  e.  ( 1 ... s
) ( p `  b )  =  0 ) )
72 nne 2798 . . . . . . . . . . . . . . . . . 18  |-  ( -.  ( p `  b
)  =/=  0  <->  (
p `  b )  =  0 )
7372rexbii 3041 . . . . . . . . . . . . . . . . 17  |-  ( E. b  e.  ( 1 ... s )  -.  ( p `  b
)  =/=  0  <->  E. b  e.  ( 1 ... s ) ( p `  b )  =  0 )
74 rexnal 2995 . . . . . . . . . . . . . . . . 17  |-  ( E. b  e.  ( 1 ... s )  -.  ( p `  b
)  =/=  0  <->  -.  A. b  e.  ( 1 ... s ) ( p `  b )  =/=  0 )
7573, 74bitr3i 266 . . . . . . . . . . . . . . . 16  |-  ( E. b  e.  ( 1 ... s ) ( p `  b )  =  0  <->  -.  A. b  e.  ( 1 ... s
) ( p `  b )  =/=  0
)
7671, 75syl6ib 241 . . . . . . . . . . . . . . 15  |-  ( ( ( n  e.  NN  /\  ( p `  n
)  =  0 )  /\  s  e.  NN )  ->  ( -.  s  <  n  ->  -.  A. b  e.  ( 1 ... s
) ( p `  b )  =/=  0
) )
7776con4d 114 . . . . . . . . . . . . . 14  |-  ( ( ( n  e.  NN  /\  ( p `  n
)  =  0 )  /\  s  e.  NN )  ->  ( A. b  e.  ( 1 ... s
) ( p `  b )  =/=  0  ->  s  <  n ) )
7857, 77sylan2 491 . . . . . . . . . . . . 13  |-  ( ( ( n  e.  NN  /\  ( p `  n
)  =  0 )  /\  s  e.  ( 1 ... N ) )  ->  ( A. b  e.  ( 1 ... s ) ( p `  b )  =/=  0  ->  s  <  n ) )
7956, 78syl5 34 . . . . . . . . . . . 12  |-  ( ( ( n  e.  NN  /\  ( p `  n
)  =  0 )  /\  s  e.  ( 1 ... N ) )  ->  ( A. b  e.  ( 1 ... s ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 )  ->  s  <  n
) )
8079ralrimiva 2966 . . . . . . . . . . 11  |-  ( ( n  e.  NN  /\  ( p `  n
)  =  0 )  ->  A. s  e.  ( 1 ... N ) ( A. b  e.  ( 1 ... s
) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
)  ->  s  <  n ) )
81 ralunb 3794 . . . . . . . . . . . 12  |-  ( A. s  e.  ( {
0 }  u.  {
a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
) } ) s  <  n  <->  ( A. s  e.  { 0 } s  <  n  /\  A. s  e.  {
a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
) } s  < 
n ) )
82 breq1 4656 . . . . . . . . . . . . . 14  |-  ( s  =  0  ->  (
s  <  n  <->  0  <  n ) )
8332, 82ralsn 4222 . . . . . . . . . . . . 13  |-  ( A. s  e.  { 0 } s  <  n  <->  0  <  n )
84 oveq2 6658 . . . . . . . . . . . . . . 15  |-  ( a  =  s  ->  (
1 ... a )  =  ( 1 ... s
) )
8584raleqdv 3144 . . . . . . . . . . . . . 14  |-  ( a  =  s  ->  ( A. b  e.  (
1 ... a ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 )  <->  A. b  e.  (
1 ... s ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) ) )
8685ralrab 3368 . . . . . . . . . . . . 13  |-  ( A. s  e.  { a  e.  ( 1 ... N
)  |  A. b  e.  ( 1 ... a
) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) } s  < 
n  <->  A. s  e.  ( 1 ... N ) ( A. b  e.  ( 1 ... s
) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
)  ->  s  <  n ) )
8783, 86anbi12i 733 . . . . . . . . . . . 12  |-  ( ( A. s  e.  {
0 } s  < 
n  /\  A. s  e.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a
) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) } s  < 
n )  <->  ( 0  <  n  /\  A. s  e.  ( 1 ... N ) ( A. b  e.  ( 1 ... s ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
)  ->  s  <  n ) ) )
8881, 87bitri 264 . . . . . . . . . . 11  |-  ( A. s  e.  ( {
0 }  u.  {
a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
) } ) s  <  n  <->  ( 0  <  n  /\  A. s  e.  ( 1 ... N ) ( A. b  e.  ( 1 ... s ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
)  ->  s  <  n ) ) )
8954, 80, 88sylanbrc 698 . . . . . . . . . 10  |-  ( ( n  e.  NN  /\  ( p `  n
)  =  0 )  ->  A. s  e.  ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
) } ) s  <  n )
90 breq1 4656 . . . . . . . . . . 11  |-  ( s  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
) } ) ,  RR ,  <  )  ->  ( s  <  n  <->  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) } ) ,  RR ,  <  )  <  n
) )
9190rspcva 3307 . . . . . . . . . 10  |-  ( ( sup ( ( { 0 }  u.  {
a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
) } ) ,  RR ,  <  )  e.  ( { 0 }  u.  { a  e.  ( 1 ... N
)  |  A. b  e.  ( 1 ... a
) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) } )  /\  A. s  e.  ( { 0 }  u.  {
a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
) } ) s  <  n )  ->  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) } ) ,  RR ,  <  )  <  n
)
9248, 89, 91sylancr 695 . . . . . . . . 9  |-  ( ( n  e.  NN  /\  ( p `  n
)  =  0 )  ->  sup ( ( { 0 }  u.  {
a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
) } ) ,  RR ,  <  )  <  n )
9352, 92sylan 488 . . . . . . . 8  |-  ( ( n  e.  ( 1 ... N )  /\  ( p `  n
)  =  0 )  ->  sup ( ( { 0 }  u.  {
a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
) } ) ,  RR ,  <  )  <  n )
94933adant2 1080 . . . . . . 7  |-  ( ( n  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... k )  /\  ( p `  n
)  =  0 )  ->  sup ( ( { 0 }  u.  {
a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
) } ) ,  RR ,  <  )  <  n )
9594adantl 482 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
n  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... k )  /\  ( p `  n
)  =  0 ) )  ->  sup (
( { 0 }  u.  { a  e.  ( 1 ... N
)  |  A. b  e.  ( 1 ... a
) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) } ) ,  RR ,  <  )  <  n )
9640zred 11482 . . . . . . . . . . 11  |-  ( n  e.  ( 1 ... N )  ->  n  e.  RR )
97963ad2ant1 1082 . . . . . . . . . 10  |-  ( ( n  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... k )  /\  ( p `  n
)  =  k )  ->  n  e.  RR )
9897adantl 482 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
n  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... k )  /\  ( p `  n
)  =  k ) )  ->  n  e.  RR )
99 simpr1 1067 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
n  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... k )  /\  ( p `  n
)  =  k ) )  ->  n  e.  ( 1 ... N
) )
100 simpll 790 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
n  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... k )  /\  ( p `  n
)  =  k ) )  ->  ph )
101 simplr 792 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
n  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... k ) ) )  ->  k  e.  NN )
102 elfzelz 12342 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( i  e.  ( 0 ... k )  ->  i  e.  ZZ )
103102zred 11482 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( i  e.  ( 0 ... k )  ->  i  e.  RR )
104 nndivre 11056 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( i  e.  RR  /\  k  e.  NN )  ->  ( i  /  k
)  e.  RR )
105103, 104sylan 488 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( i  e.  ( 0 ... k )  /\  k  e.  NN )  ->  ( i  /  k
)  e.  RR )
106 elfzle1 12344 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( i  e.  ( 0 ... k )  ->  0  <_  i )
107103, 106jca 554 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( i  e.  ( 0 ... k )  ->  (
i  e.  RR  /\  0  <_  i ) )
108 nnrp 11842 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  e.  NN  ->  k  e.  RR+ )
109108rpregt0d 11878 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  e.  NN  ->  (
k  e.  RR  /\  0  <  k ) )
110 divge0 10892 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( i  e.  RR  /\  0  <_  i )  /\  ( k  e.  RR  /\  0  <  k ) )  ->  0  <_  ( i  /  k ) )
111107, 109, 110syl2an 494 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( i  e.  ( 0 ... k )  /\  k  e.  NN )  ->  0  <_  ( i  /  k ) )
112 elfzle2 12345 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( i  e.  ( 0 ... k )  ->  i  <_  k )
113112adantr 481 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( i  e.  ( 0 ... k )  /\  k  e.  NN )  ->  i  <_  k )
114103adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( i  e.  ( 0 ... k )  /\  k  e.  NN )  ->  i  e.  RR )
115 1red 10055 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( i  e.  ( 0 ... k )  /\  k  e.  NN )  ->  1  e.  RR )
116108adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( i  e.  ( 0 ... k )  /\  k  e.  NN )  ->  k  e.  RR+ )
117114, 115, 116ledivmuld 11925 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( i  e.  ( 0 ... k )  /\  k  e.  NN )  ->  ( ( i  / 
k )  <_  1  <->  i  <_  ( k  x.  1 ) ) )
118 nncn 11028 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( k  e.  NN  ->  k  e.  CC )
119118mulid1d 10057 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( k  e.  NN  ->  (
k  x.  1 )  =  k )
120119breq2d 4665 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( k  e.  NN  ->  (
i  <_  ( k  x.  1 )  <->  i  <_  k ) )
121120adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( i  e.  ( 0 ... k )  /\  k  e.  NN )  ->  ( i  <_  (
k  x.  1 )  <-> 
i  <_  k )
)
122117, 121bitrd 268 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( i  e.  ( 0 ... k )  /\  k  e.  NN )  ->  ( ( i  / 
k )  <_  1  <->  i  <_  k ) )
123113, 122mpbird 247 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( i  e.  ( 0 ... k )  /\  k  e.  NN )  ->  ( i  /  k
)  <_  1 )
124 0re 10040 . . . . . . . . . . . . . . . . . . . . . 22  |-  0  e.  RR
125 1re 10039 . . . . . . . . . . . . . . . . . . . . . 22  |-  1  e.  RR
126124, 125elicc2i 12239 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( i  /  k )  e.  ( 0 [,] 1 )  <->  ( (
i  /  k )  e.  RR  /\  0  <_  ( i  /  k
)  /\  ( i  /  k )  <_ 
1 ) )
127105, 111, 123, 126syl3anbrc 1246 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( i  e.  ( 0 ... k )  /\  k  e.  NN )  ->  ( i  /  k
)  e.  ( 0 [,] 1 ) )
128127ancoms 469 . . . . . . . . . . . . . . . . . . 19  |-  ( ( k  e.  NN  /\  i  e.  ( 0 ... k ) )  ->  ( i  / 
k )  e.  ( 0 [,] 1 ) )
129 elsni 4194 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  e.  { k }  ->  j  =  k )
130129oveq2d 6666 . . . . . . . . . . . . . . . . . . . 20  |-  ( j  e.  { k }  ->  ( i  / 
j )  =  ( i  /  k ) )
131130eleq1d 2686 . . . . . . . . . . . . . . . . . . 19  |-  ( j  e.  { k }  ->  ( ( i  /  j )  e.  ( 0 [,] 1
)  <->  ( i  / 
k )  e.  ( 0 [,] 1 ) ) )
132128, 131syl5ibrcom 237 . . . . . . . . . . . . . . . . . 18  |-  ( ( k  e.  NN  /\  i  e.  ( 0 ... k ) )  ->  ( j  e. 
{ k }  ->  ( i  /  j )  e.  ( 0 [,] 1 ) ) )
133132impr 649 . . . . . . . . . . . . . . . . 17  |-  ( ( k  e.  NN  /\  ( i  e.  ( 0 ... k )  /\  j  e.  {
k } ) )  ->  ( i  / 
j )  e.  ( 0 [,] 1 ) )
134101, 133sylan 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  k  e.  NN )  /\  ( n  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... k
) ) )  /\  ( i  e.  ( 0 ... k )  /\  j  e.  {
k } ) )  ->  ( i  / 
j )  e.  ( 0 [,] 1 ) )
135 simprr 796 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
n  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... k ) ) )  ->  p :
( 1 ... N
) --> ( 0 ... k ) )
136 vex 3203 . . . . . . . . . . . . . . . . . 18  |-  k  e. 
_V
137136fconst 6091 . . . . . . . . . . . . . . . . 17  |-  ( ( 1 ... N )  X.  { k } ) : ( 1 ... N ) --> { k }
138137a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
n  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... k ) ) )  ->  ( (
1 ... N )  X. 
{ k } ) : ( 1 ... N ) --> { k } )
139 fzfid 12772 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
n  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... k ) ) )  ->  ( 1 ... N )  e. 
Fin )
140 inidm 3822 . . . . . . . . . . . . . . . 16  |-  ( ( 1 ... N )  i^i  ( 1 ... N ) )  =  ( 1 ... N
)
141134, 135, 138, 139, 139, 140off 6912 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
n  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... k ) ) )  ->  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) : ( 1 ... N
) --> ( 0 [,] 1 ) )
142 poimir.i . . . . . . . . . . . . . . . . 17  |-  I  =  ( ( 0 [,] 1 )  ^m  (
1 ... N ) )
143142eleq2i 2693 . . . . . . . . . . . . . . . 16  |-  ( ( p  oF  / 
( ( 1 ... N )  X.  {
k } ) )  e.  I  <->  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) )  e.  ( ( 0 [,] 1 )  ^m  (
1 ... N ) ) )
144 ovex 6678 . . . . . . . . . . . . . . . . 17  |-  ( 0 [,] 1 )  e. 
_V
145 ovex 6678 . . . . . . . . . . . . . . . . 17  |-  ( 1 ... N )  e. 
_V
146144, 145elmap 7886 . . . . . . . . . . . . . . . 16  |-  ( ( p  oF  / 
( ( 1 ... N )  X.  {
k } ) )  e.  ( ( 0 [,] 1 )  ^m  ( 1 ... N
) )  <->  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) : ( 1 ... N
) --> ( 0 [,] 1 ) )
147143, 146bitri 264 . . . . . . . . . . . . . . 15  |-  ( ( p  oF  / 
( ( 1 ... N )  X.  {
k } ) )  e.  I  <->  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) : ( 1 ... N
) --> ( 0 [,] 1 ) )
148141, 147sylibr 224 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
n  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... k ) ) )  ->  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) )  e.  I )
1491483adantr3 1222 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
n  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... k )  /\  ( p `  n
)  =  k ) )  ->  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) )  e.  I )
150 3anass 1042 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... k )  /\  ( p `  n
)  =  k )  <-> 
( n  e.  ( 1 ... N )  /\  ( p : ( 1 ... N
) --> ( 0 ... k )  /\  (
p `  n )  =  k ) ) )
151 ancom 466 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  ( 1 ... N )  /\  ( p : ( 1 ... N ) --> ( 0 ... k
)  /\  ( p `  n )  =  k ) )  <->  ( (
p : ( 1 ... N ) --> ( 0 ... k )  /\  ( p `  n )  =  k )  /\  n  e.  ( 1 ... N
) ) )
152150, 151bitri 264 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... k )  /\  ( p `  n
)  =  k )  <-> 
( ( p : ( 1 ... N
) --> ( 0 ... k )  /\  (
p `  n )  =  k )  /\  n  e.  ( 1 ... N ) ) )
153 ffn 6045 . . . . . . . . . . . . . . . . . 18  |-  ( p : ( 1 ... N ) --> ( 0 ... k )  ->  p  Fn  ( 1 ... N ) )
154153ad2antrl 764 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
p : ( 1 ... N ) --> ( 0 ... k )  /\  ( p `  n )  =  k ) )  ->  p  Fn  ( 1 ... N
) )
155 fnconstg 6093 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  _V  ->  (
( 1 ... N
)  X.  { k } )  Fn  (
1 ... N ) )
156136, 155mp1i 13 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
p : ( 1 ... N ) --> ( 0 ... k )  /\  ( p `  n )  =  k ) )  ->  (
( 1 ... N
)  X.  { k } )  Fn  (
1 ... N ) )
157 fzfid 12772 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
p : ( 1 ... N ) --> ( 0 ... k )  /\  ( p `  n )  =  k ) )  ->  (
1 ... N )  e. 
Fin )
158 simplrr 801 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  k  e.  NN )  /\  ( p : ( 1 ... N ) --> ( 0 ... k
)  /\  ( p `  n )  =  k ) )  /\  n  e.  ( 1 ... N
) )  ->  (
p `  n )  =  k )
159136fvconst2 6469 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( 1 ... N )  ->  (
( ( 1 ... N )  X.  {
k } ) `  n )  =  k )
160159adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  k  e.  NN )  /\  ( p : ( 1 ... N ) --> ( 0 ... k
)  /\  ( p `  n )  =  k ) )  /\  n  e.  ( 1 ... N
) )  ->  (
( ( 1 ... N )  X.  {
k } ) `  n )  =  k )
161154, 156, 157, 157, 140, 158, 160ofval 6906 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  k  e.  NN )  /\  ( p : ( 1 ... N ) --> ( 0 ... k
)  /\  ( p `  n )  =  k ) )  /\  n  e.  ( 1 ... N
) )  ->  (
( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) `  n )  =  ( k  / 
k ) )
162161anasss 679 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
( p : ( 1 ... N ) --> ( 0 ... k
)  /\  ( p `  n )  =  k )  /\  n  e.  ( 1 ... N
) ) )  -> 
( ( p  oF  /  ( ( 1 ... N )  X.  { k } ) ) `  n
)  =  ( k  /  k ) )
163152, 162sylan2b 492 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
n  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... k )  /\  ( p `  n
)  =  k ) )  ->  ( (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) `
 n )  =  ( k  /  k
) )
164 nnne0 11053 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  k  =/=  0 )
165118, 164dividd 10799 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  (
k  /  k )  =  1 )
166165ad2antlr 763 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
n  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... k )  /\  ( p `  n
)  =  k ) )  ->  ( k  /  k )  =  1 )
167163, 166eqtrd 2656 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
n  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... k )  /\  ( p `  n
)  =  k ) )  ->  ( (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) `
 n )  =  1 )
168 ovex 6678 . . . . . . . . . . . . . 14  |-  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) )  e. 
_V
169 eleq1 2689 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( p  oF  /  ( ( 1 ... N )  X.  { k } ) )  ->  (
z  e.  I  <->  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) )  e.  I ) )
170 fveq1 6190 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( p  oF  /  ( ( 1 ... N )  X.  { k } ) )  ->  (
z `  n )  =  ( ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) `  n ) )
171170eqeq1d 2624 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( p  oF  /  ( ( 1 ... N )  X.  { k } ) )  ->  (
( z `  n
)  =  1  <->  (
( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) `  n )  =  1 ) )
172169, 1713anbi23d 1402 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( p  oF  /  ( ( 1 ... N )  X.  { k } ) )  ->  (
( n  e.  ( 1 ... N )  /\  z  e.  I  /\  ( z `  n
)  =  1 )  <-> 
( n  e.  ( 1 ... N )  /\  ( p  oF  /  ( ( 1 ... N )  X.  { k } ) )  e.  I  /\  ( ( p  oF  /  ( ( 1 ... N )  X.  { k } ) ) `  n
)  =  1 ) ) )
173172anbi2d 740 . . . . . . . . . . . . . . 15  |-  ( z  =  ( p  oF  /  ( ( 1 ... N )  X.  { k } ) )  ->  (
( ph  /\  (
n  e.  ( 1 ... N )  /\  z  e.  I  /\  ( z `  n
)  =  1 ) )  <->  ( ph  /\  ( n  e.  (
1 ... N )  /\  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) )  e.  I  /\  ( ( p  oF  /  ( ( 1 ... N )  X.  { k } ) ) `  n
)  =  1 ) ) ) )
174 fveq2 6191 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( p  oF  /  ( ( 1 ... N )  X.  { k } ) )  ->  ( F `  z )  =  ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) )
175174fveq1d 6193 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( p  oF  /  ( ( 1 ... N )  X.  { k } ) )  ->  (
( F `  z
) `  n )  =  ( ( F `
 ( p  oF  /  ( ( 1 ... N )  X.  { k } ) ) ) `  n ) )
176175breq2d 4665 . . . . . . . . . . . . . . 15  |-  ( z  =  ( p  oF  /  ( ( 1 ... N )  X.  { k } ) )  ->  (
0  <_  ( ( F `  z ) `  n )  <->  0  <_  ( ( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  n ) ) )
177173, 176imbi12d 334 . . . . . . . . . . . . . 14  |-  ( z  =  ( p  oF  /  ( ( 1 ... N )  X.  { k } ) )  ->  (
( ( ph  /\  ( n  e.  (
1 ... N )  /\  z  e.  I  /\  ( z `  n
)  =  1 ) )  ->  0  <_  ( ( F `  z
) `  n )
)  <->  ( ( ph  /\  ( n  e.  ( 1 ... N )  /\  ( p  oF  /  ( ( 1 ... N )  X.  { k } ) )  e.  I  /\  ( ( p  oF  /  ( ( 1 ... N )  X.  { k } ) ) `  n
)  =  1 ) )  ->  0  <_  ( ( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  n ) ) ) )
178 poimir.3 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  z  e.  I  /\  ( z `  n )  =  1 ) )  ->  0  <_  ( ( F `  z ) `  n
) )
179168, 177, 178vtocl 3259 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) )  e.  I  /\  ( ( p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) `
 n )  =  1 ) )  -> 
0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 n ) )
180100, 99, 149, 167, 179syl13anc 1328 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
n  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... k )  /\  ( p `  n
)  =  k ) )  ->  0  <_  ( ( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  n ) )
181 simpr 477 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  NN )
182 simp3 1063 . . . . . . . . . . . . 13  |-  ( ( n  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... k )  /\  ( p `  n
)  =  k )  ->  ( p `  n )  =  k )
183 neeq1 2856 . . . . . . . . . . . . . . 15  |-  ( ( p `  n )  =  k  ->  (
( p `  n
)  =/=  0  <->  k  =/=  0 ) )
184164, 183syl5ibrcom 237 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  (
( p `  n
)  =  k  -> 
( p `  n
)  =/=  0 ) )
185184imp 445 . . . . . . . . . . . . 13  |-  ( ( k  e.  NN  /\  ( p `  n
)  =  k )  ->  ( p `  n )  =/=  0
)
186181, 182, 185syl2an 494 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
n  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... k )  /\  ( p `  n
)  =  k ) )  ->  ( p `  n )  =/=  0
)
187 vex 3203 . . . . . . . . . . . . 13  |-  n  e. 
_V
188 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( b  =  n  ->  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  =  ( ( F `
 ( p  oF  /  ( ( 1 ... N )  X.  { k } ) ) ) `  n ) )
189188breq2d 4665 . . . . . . . . . . . . . 14  |-  ( b  =  n  ->  (
0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  <->  0  <_  ( ( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  n ) ) )
19066neeq1d 2853 . . . . . . . . . . . . . 14  |-  ( b  =  n  ->  (
( p `  b
)  =/=  0  <->  (
p `  n )  =/=  0 ) )
191189, 190anbi12d 747 . . . . . . . . . . . . 13  |-  ( b  =  n  ->  (
( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
)  <->  ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  n
)  /\  ( p `  n )  =/=  0
) ) )
192187, 191ralsn 4222 . . . . . . . . . . . 12  |-  ( A. b  e.  { n }  ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
)  <->  ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  n
)  /\  ( p `  n )  =/=  0
) )
193180, 186, 192sylanbrc 698 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
n  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... k )  /\  ( p `  n
)  =  k ) )  ->  A. b  e.  { n }  (
0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) )
19440zcnd 11483 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  ( 1 ... N )  ->  n  e.  CC )
195 1cnd 10056 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  ( 1 ... N )  ->  1  e.  CC )
196194, 195subeq0ad 10402 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( 1 ... N )  ->  (
( n  -  1 )  =  0  <->  n  =  1 ) )
197196biimpcd 239 . . . . . . . . . . . . . . . . 17  |-  ( ( n  -  1 )  =  0  ->  (
n  e.  ( 1 ... N )  ->  n  =  1 ) )
198 1z 11407 . . . . . . . . . . . . . . . . . . . . 21  |-  1  e.  ZZ
199 fzsn 12383 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 1  e.  ZZ  ->  (
1 ... 1 )  =  { 1 } )
200198, 199ax-mp 5 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1 ... 1 )  =  { 1 }
201 oveq2 6658 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  =  1  ->  (
1 ... n )  =  ( 1 ... 1
) )
202 sneq 4187 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  =  1  ->  { n }  =  { 1 } )
203200, 201, 2023eqtr4a 2682 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  1  ->  (
1 ... n )  =  { n } )
204203raleqdv 3144 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  1  ->  ( A. b  e.  (
1 ... n ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 )  <->  A. b  e.  { n }  ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) ) )
205204biimprd 238 . . . . . . . . . . . . . . . . 17  |-  ( n  =  1  ->  ( A. b  e.  { n }  ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
)  ->  A. b  e.  ( 1 ... n
) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) ) )
206197, 205syl6 35 . . . . . . . . . . . . . . . 16  |-  ( ( n  -  1 )  =  0  ->  (
n  e.  ( 1 ... N )  -> 
( A. b  e. 
{ n }  (
0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 )  ->  A. b  e.  ( 1 ... n ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
) ) ) )
207 ralun 3795 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A. b  e.  ( 1 ... ( n  -  1 ) ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
)  /\  A. b  e.  { n }  (
0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) )  ->  A. b  e.  ( ( 1 ... ( n  -  1 ) )  u.  {
n } ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) )
208 npcan1 10455 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( n  e.  CC  ->  (
( n  -  1 )  +  1 )  =  n )
209194, 208syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  e.  ( 1 ... N )  ->  (
( n  -  1 )  +  1 )  =  n )
210 elfzuz 12338 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  e.  ( 1 ... N )  ->  n  e.  ( ZZ>= `  1 )
)
211209, 210eqeltrd 2701 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( n  e.  ( 1 ... N )  ->  (
( n  -  1 )  +  1 )  e.  ( ZZ>= `  1
) )
212 peano2zm 11420 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( n  e.  ZZ  ->  (
n  -  1 )  e.  ZZ )
213 uzid 11702 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( n  -  1 )  e.  ZZ  ->  (
n  -  1 )  e.  ( ZZ>= `  (
n  -  1 ) ) )
214 peano2uz 11741 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( n  -  1 )  e.  ( ZZ>= `  (
n  -  1 ) )  ->  ( (
n  -  1 )  +  1 )  e.  ( ZZ>= `  ( n  -  1 ) ) )
21540, 212, 213, 2144syl 19 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  e.  ( 1 ... N )  ->  (
( n  -  1 )  +  1 )  e.  ( ZZ>= `  (
n  -  1 ) ) )
216209, 215eqeltrrd 2702 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( n  e.  ( 1 ... N )  ->  n  e.  ( ZZ>= `  ( n  -  1 ) ) )
217 fzsplit2 12366 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( n  - 
1 )  +  1 )  e.  ( ZZ>= ` 
1 )  /\  n  e.  ( ZZ>= `  ( n  -  1 ) ) )  ->  ( 1 ... n )  =  ( ( 1 ... ( n  -  1 ) )  u.  (
( ( n  - 
1 )  +  1 ) ... n ) ) )
218211, 216, 217syl2anc 693 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  e.  ( 1 ... N )  ->  (
1 ... n )  =  ( ( 1 ... ( n  -  1 ) )  u.  (
( ( n  - 
1 )  +  1 ) ... n ) ) )
219209oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  e.  ( 1 ... N )  ->  (
( ( n  - 
1 )  +  1 ) ... n )  =  ( n ... n ) )
220 fzsn 12383 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( n  e.  ZZ  ->  (
n ... n )  =  { n } )
22140, 220syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  e.  ( 1 ... N )  ->  (
n ... n )  =  { n } )
222219, 221eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( n  e.  ( 1 ... N )  ->  (
( ( n  - 
1 )  +  1 ) ... n )  =  { n }
)
223222uneq2d 3767 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  e.  ( 1 ... N )  ->  (
( 1 ... (
n  -  1 ) )  u.  ( ( ( n  -  1 )  +  1 ) ... n ) )  =  ( ( 1 ... ( n  - 
1 ) )  u. 
{ n } ) )
224218, 223eqtrd 2656 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  ( 1 ... N )  ->  (
1 ... n )  =  ( ( 1 ... ( n  -  1 ) )  u.  {
n } ) )
225224raleqdv 3144 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  e.  ( 1 ... N )  ->  ( A. b  e.  (
1 ... n ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 )  <->  A. b  e.  (
( 1 ... (
n  -  1 ) )  u.  { n } ) ( 0  <_  ( ( F `
 ( p  oF  /  ( ( 1 ... N )  X.  { k } ) ) ) `  b )  /\  (
p `  b )  =/=  0 ) ) )
226207, 225syl5ibr 236 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  ( 1 ... N )  ->  (
( A. b  e.  ( 1 ... (
n  -  1 ) ) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
)  /\  A. b  e.  { n }  (
0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) )  ->  A. b  e.  ( 1 ... n
) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) ) )
227226expd 452 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( 1 ... N )  ->  ( A. b  e.  (
1 ... ( n  - 
1 ) ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 )  ->  ( A. b  e.  { n }  (
0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 )  ->  A. b  e.  ( 1 ... n ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
) ) ) )
228227com12 32 . . . . . . . . . . . . . . . . 17  |-  ( A. b  e.  ( 1 ... ( n  - 
1 ) ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 )  ->  ( n  e.  ( 1 ... N
)  ->  ( A. b  e.  { n }  ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
)  ->  A. b  e.  ( 1 ... n
) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) ) ) )
229228adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( n  -  1 )  e.  ( 1 ... N )  /\  A. b  e.  ( 1 ... ( n  - 
1 ) ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) )  ->  ( n  e.  ( 1 ... N
)  ->  ( A. b  e.  { n }  ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
)  ->  A. b  e.  ( 1 ... n
) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) ) ) )
230206, 229jaoi 394 . . . . . . . . . . . . . . 15  |-  ( ( ( n  -  1 )  =  0  \/  ( ( n  - 
1 )  e.  ( 1 ... N )  /\  A. b  e.  ( 1 ... (
n  -  1 ) ) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) ) )  -> 
( n  e.  ( 1 ... N )  ->  ( A. b  e.  { n }  (
0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 )  ->  A. b  e.  ( 1 ... n ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
) ) ) )
231230imdistand 728 . . . . . . . . . . . . . 14  |-  ( ( ( n  -  1 )  =  0  \/  ( ( n  - 
1 )  e.  ( 1 ... N )  /\  A. b  e.  ( 1 ... (
n  -  1 ) ) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) ) )  -> 
( ( n  e.  ( 1 ... N
)  /\  A. b  e.  { n }  (
0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) )  ->  ( n  e.  ( 1 ... N
)  /\  A. b  e.  ( 1 ... n
) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) ) ) )
232231com12 32 . . . . . . . . . . . . 13  |-  ( ( n  e.  ( 1 ... N )  /\  A. b  e.  { n }  ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) )  ->  (
( ( n  - 
1 )  =  0  \/  ( ( n  -  1 )  e.  ( 1 ... N
)  /\  A. b  e.  ( 1 ... (
n  -  1 ) ) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) ) )  -> 
( n  e.  ( 1 ... N )  /\  A. b  e.  ( 1 ... n
) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) ) ) )
233 elun 3753 . . . . . . . . . . . . . 14  |-  ( ( n  -  1 )  e.  ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) } )  <->  ( (
n  -  1 )  e.  { 0 }  \/  ( n  - 
1 )  e.  {
a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
) } ) )
234 ovex 6678 . . . . . . . . . . . . . . . 16  |-  ( n  -  1 )  e. 
_V
235234elsn 4192 . . . . . . . . . . . . . . 15  |-  ( ( n  -  1 )  e.  { 0 }  <-> 
( n  -  1 )  =  0 )
236 oveq2 6658 . . . . . . . . . . . . . . . . 17  |-  ( a  =  ( n  - 
1 )  ->  (
1 ... a )  =  ( 1 ... (
n  -  1 ) ) )
237236raleqdv 3144 . . . . . . . . . . . . . . . 16  |-  ( a  =  ( n  - 
1 )  ->  ( A. b  e.  (
1 ... a ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 )  <->  A. b  e.  (
1 ... ( n  - 
1 ) ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) ) )
238237elrab 3363 . . . . . . . . . . . . . . 15  |-  ( ( n  -  1 )  e.  { a  e.  ( 1 ... N
)  |  A. b  e.  ( 1 ... a
) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) }  <->  ( (
n  -  1 )  e.  ( 1 ... N )  /\  A. b  e.  ( 1 ... ( n  - 
1 ) ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) ) )
239235, 238orbi12i 543 . . . . . . . . . . . . . 14  |-  ( ( ( n  -  1 )  e.  { 0 }  \/  ( n  -  1 )  e. 
{ a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a
) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) } )  <->  ( (
n  -  1 )  =  0  \/  (
( n  -  1 )  e.  ( 1 ... N )  /\  A. b  e.  ( 1 ... ( n  - 
1 ) ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) ) ) )
240233, 239bitri 264 . . . . . . . . . . . . 13  |-  ( ( n  -  1 )  e.  ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) } )  <->  ( (
n  -  1 )  =  0  \/  (
( n  -  1 )  e.  ( 1 ... N )  /\  A. b  e.  ( 1 ... ( n  - 
1 ) ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) ) ) )
241 oveq2 6658 . . . . . . . . . . . . . . 15  |-  ( a  =  n  ->  (
1 ... a )  =  ( 1 ... n
) )
242241raleqdv 3144 . . . . . . . . . . . . . 14  |-  ( a  =  n  ->  ( A. b  e.  (
1 ... a ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 )  <->  A. b  e.  (
1 ... n ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) ) )
243242elrab 3363 . . . . . . . . . . . . 13  |-  ( n  e.  { a  e.  ( 1 ... N
)  |  A. b  e.  ( 1 ... a
) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) }  <->  ( n  e.  ( 1 ... N
)  /\  A. b  e.  ( 1 ... n
) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) ) )
244232, 240, 2433imtr4g 285 . . . . . . . . . . . 12  |-  ( ( n  e.  ( 1 ... N )  /\  A. b  e.  { n }  ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) )  ->  (
( n  -  1 )  e.  ( { 0 }  u.  {
a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
) } )  ->  n  e.  { a  e.  ( 1 ... N
)  |  A. b  e.  ( 1 ... a
) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) } ) )
245 elun2 3781 . . . . . . . . . . . 12  |-  ( n  e.  { a  e.  ( 1 ... N
)  |  A. b  e.  ( 1 ... a
) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) }  ->  n  e.  ( { 0 }  u.  { a  e.  ( 1 ... N
)  |  A. b  e.  ( 1 ... a
) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) } ) )
246244, 245syl6 35 . . . . . . . . . . 11  |-  ( ( n  e.  ( 1 ... N )  /\  A. b  e.  { n }  ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) )  ->  (
( n  -  1 )  e.  ( { 0 }  u.  {
a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
) } )  ->  n  e.  ( {
0 }  u.  {
a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
) } ) ) )
24799, 193, 246syl2anc 693 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
n  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... k )  /\  ( p `  n
)  =  k ) )  ->  ( (
n  -  1 )  e.  ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) } )  ->  n  e.  ( { 0 }  u.  { a  e.  ( 1 ... N
)  |  A. b  e.  ( 1 ... a
) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) } ) ) )
248 fimaxre2 10969 . . . . . . . . . . . . 13  |-  ( ( ( { 0 }  u.  { a  e.  ( 1 ... N
)  |  A. b  e.  ( 1 ... a
) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) } )  C_  RR  /\  ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) } )  e.  Fin )  ->  E. i  e.  RR  A. j  e.  ( { 0 }  u.  {
a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
) } ) j  <_  i )
24945, 31, 248mp2an 708 . . . . . . . . . . . 12  |-  E. i  e.  RR  A. j  e.  ( { 0 }  u.  { a  e.  ( 1 ... N
)  |  A. b  e.  ( 1 ... a
) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) } ) j  <_  i
25045, 36, 2493pm3.2i 1239 . . . . . . . . . . 11  |-  ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
) } )  C_  RR  /\  ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) } )  =/=  (/)  /\  E. i  e.  RR  A. j  e.  ( { 0 }  u.  { a  e.  ( 1 ... N
)  |  A. b  e.  ( 1 ... a
) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) } ) j  <_  i )
251250suprubii 10998 . . . . . . . . . 10  |-  ( n  e.  ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) } )  ->  n  <_  sup ( ( { 0 }  u.  {
a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
) } ) ,  RR ,  <  )
)
252247, 251syl6 35 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
n  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... k )  /\  ( p `  n
)  =  k ) )  ->  ( (
n  -  1 )  e.  ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) } )  ->  n  <_  sup ( ( { 0 }  u.  {
a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
) } ) ,  RR ,  <  )
) )
253 ltm1 10863 . . . . . . . . . 10  |-  ( n  e.  RR  ->  (
n  -  1 )  <  n )
254 peano2rem 10348 . . . . . . . . . . 11  |-  ( n  e.  RR  ->  (
n  -  1 )  e.  RR )
25545, 48sselii 3600 . . . . . . . . . . . 12  |-  sup (
( { 0 }  u.  { a  e.  ( 1 ... N
)  |  A. b  e.  ( 1 ... a
) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) } ) ,  RR ,  <  )  e.  RR
256 ltletr 10129 . . . . . . . . . . . 12  |-  ( ( ( n  -  1 )  e.  RR  /\  n  e.  RR  /\  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) } ) ,  RR ,  <  )  e.  RR )  ->  ( ( ( n  -  1 )  <  n  /\  n  <_  sup ( ( { 0 }  u.  {
a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
) } ) ,  RR ,  <  )
)  ->  ( n  -  1 )  <  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) )
257255, 256mp3an3 1413 . . . . . . . . . . 11  |-  ( ( ( n  -  1 )  e.  RR  /\  n  e.  RR )  ->  ( ( ( n  -  1 )  < 
n  /\  n  <_  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) } ) ,  RR ,  <  ) )  -> 
( n  -  1 )  <  sup (
( { 0 }  u.  { a  e.  ( 1 ... N
)  |  A. b  e.  ( 1 ... a
) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) } ) ,  RR ,  <  )
) )
258254, 257mpancom 703 . . . . . . . . . 10  |-  ( n  e.  RR  ->  (
( ( n  - 
1 )  <  n  /\  n  <_  sup (
( { 0 }  u.  { a  e.  ( 1 ... N
)  |  A. b  e.  ( 1 ... a
) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) } ) ,  RR ,  <  )
)  ->  ( n  -  1 )  <  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) )
259253, 258mpand 711 . . . . . . . . 9  |-  ( n  e.  RR  ->  (
n  <_  sup (
( { 0 }  u.  { a  e.  ( 1 ... N
)  |  A. b  e.  ( 1 ... a
) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) } ) ,  RR ,  <  )  ->  ( n  -  1 )  <  sup (
( { 0 }  u.  { a  e.  ( 1 ... N
)  |  A. b  e.  ( 1 ... a
) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) } ) ,  RR ,  <  )
) )
26098, 252, 259sylsyld 61 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
n  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... k )  /\  ( p `  n
)  =  k ) )  ->  ( (
n  -  1 )  e.  ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) } )  ->  (
n  -  1 )  <  sup ( ( { 0 }  u.  {
a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
) } ) ,  RR ,  <  )
) )
261255ltnri 10146 . . . . . . . . . 10  |-  -.  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) } ) ,  RR ,  <  )  <  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) } ) ,  RR ,  <  )
262 breq1 4656 . . . . . . . . . 10  |-  ( sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) } ) ,  RR ,  <  )  =  ( n  -  1 )  ->  ( sup (
( { 0 }  u.  { a  e.  ( 1 ... N
)  |  A. b  e.  ( 1 ... a
) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) } ) ,  RR ,  <  )  <  sup ( ( { 0 }  u.  {
a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
) } ) ,  RR ,  <  )  <->  ( n  -  1 )  <  sup ( ( { 0 }  u.  {
a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
) } ) ,  RR ,  <  )
) )
263261, 262mtbii 316 . . . . . . . . 9  |-  ( sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) } ) ,  RR ,  <  )  =  ( n  -  1 )  ->  -.  ( n  -  1 )  <  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) } ) ,  RR ,  <  ) )
264263necon2ai 2823 . . . . . . . 8  |-  ( ( n  -  1 )  <  sup ( ( { 0 }  u.  {
a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
) } ) ,  RR ,  <  )  ->  sup ( ( { 0 }  u.  {
a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
) } ) ,  RR ,  <  )  =/=  ( n  -  1 ) )
265260, 264syl6 35 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
n  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... k )  /\  ( p `  n
)  =  k ) )  ->  ( (
n  -  1 )  e.  ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) } )  ->  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) } ) ,  RR ,  <  )  =/=  (
n  -  1 ) ) )
266 eleq1 2689 . . . . . . . . 9  |-  ( sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) } ) ,  RR ,  <  )  =  ( n  -  1 )  ->  ( sup (
( { 0 }  u.  { a  e.  ( 1 ... N
)  |  A. b  e.  ( 1 ... a
) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) } ) ,  RR ,  <  )  e.  ( { 0 }  u.  { a  e.  ( 1 ... N
)  |  A. b  e.  ( 1 ... a
) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) } )  <->  ( n  -  1 )  e.  ( { 0 }  u.  { a  e.  ( 1 ... N
)  |  A. b  e.  ( 1 ... a
) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) } ) ) )
26748, 266mpbii 223 . . . . . . . 8  |-  ( sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) } ) ,  RR ,  <  )  =  ( n  -  1 )  ->  ( n  - 
1 )  e.  ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
) } ) )
268267necon3bi 2820 . . . . . . 7  |-  ( -.  ( n  -  1 )  e.  ( { 0 }  u.  {
a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
p  oF  / 
( ( 1 ... N )  X.  {
k } ) ) ) `  b )  /\  ( p `  b )  =/=  0
) } )  ->  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( p  oF  /  (
( 1 ... N
)  X.  { k } ) ) ) `
 b )  /\  ( p `  b
)  =/=  0 ) } ) ,  RR ,  <  )  =/=  (
n  -  1 ) )
269265, 268pm2.61d1 171 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
n  e.  ( 1 ... N )  /\  p : ( 1 ... N ) --> ( 0 ... k )  /\  ( p `  n
)  =  k ) )  ->  sup (
( { 0 }  u.  { a  e.  ( 1 ... N
)  |  A. b  e.  ( 1 ... a
) ( 0  <_ 
( ( F `  ( p  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( p `  b )  =/=  0
) } ) ,  RR ,  <  )  =/=  ( n  -  1 ) )
2702, 13, 51, 95, 269, 181poimirlem28 33437 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  E. s  e.  ( ( ( 0..^ k )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) )
271 nn0ex 11298 . . . . . . . . . . . 12  |-  NN0  e.  _V
272 fzo0ssnn0 12548 . . . . . . . . . . . 12  |-  ( 0..^ k )  C_  NN0
273 mapss 7900 . . . . . . . . . . . 12  |-  ( ( NN0  e.  _V  /\  ( 0..^ k )  C_  NN0 )  ->  ( (
0..^ k )  ^m  ( 1 ... N
) )  C_  ( NN0  ^m  ( 1 ... N ) ) )
274271, 272, 273mp2an 708 . . . . . . . . . . 11  |-  ( ( 0..^ k )  ^m  ( 1 ... N
) )  C_  ( NN0  ^m  ( 1 ... N ) )
275 xpss1 5228 . . . . . . . . . . 11  |-  ( ( ( 0..^ k )  ^m  ( 1 ... N ) )  C_  ( NN0  ^m  ( 1 ... N ) )  ->  ( ( ( 0..^ k )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  C_  ( ( NN0  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } ) )
276274, 275ax-mp 5 . . . . . . . . . 10  |-  ( ( ( 0..^ k )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  C_  ( ( NN0  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )
277276sseli 3599 . . . . . . . . 9  |-  ( s  e.  ( ( ( 0..^ k )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
s  e.  ( ( NN0  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
278 xp1st 7198 . . . . . . . . . 10  |-  ( s  e.  ( ( ( 0..^ k )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 1st `  s
)  e.  ( ( 0..^ k )  ^m  ( 1 ... N
) ) )
279 elmapi 7879 . . . . . . . . . 10  |-  ( ( 1st `  s )  e.  ( ( 0..^ k )  ^m  (
1 ... N ) )  ->  ( 1st `  s
) : ( 1 ... N ) --> ( 0..^ k ) )
280 frn 6053 . . . . . . . . . 10  |-  ( ( 1st `  s ) : ( 1 ... N ) --> ( 0..^ k )  ->  ran  ( 1st `  s ) 
C_  ( 0..^ k ) )
281278, 279, 2803syl 18 . . . . . . . . 9  |-  ( s  e.  ( ( ( 0..^ k )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  ->  ran  ( 1st `  s
)  C_  ( 0..^ k ) )
282277, 281jca 554 . . . . . . . 8  |-  ( s  e.  ( ( ( 0..^ k )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( s  e.  ( ( NN0  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  /\  ran  ( 1st `  s )  C_  ( 0..^ k ) ) )
283282anim1i 592 . . . . . . 7  |-  ( ( s  e.  ( ( ( 0..^ k )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) )  -> 
( ( s  e.  ( ( NN0  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  /\  ran  ( 1st `  s
)  C_  ( 0..^ k ) )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) )
284 anass 681 . . . . . . 7  |-  ( ( ( s  e.  ( ( NN0  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  /\  ran  ( 1st `  s )  C_  ( 0..^ k ) )  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) )  <->  ( s  e.  ( ( NN0  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  /\  ( ran  ( 1st `  s
)  C_  ( 0..^ k )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) ) )
285283, 284sylib 208 . . . . . 6  |-  ( ( s  e.  ( ( ( 0..^ k )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) )  -> 
( s  e.  ( ( NN0  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  /\  ( ran  ( 1st `  s
)  C_  ( 0..^ k )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) ) )
286285reximi2 3010 . . . . 5  |-  ( E. s  e.  ( ( ( 0..^ k )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } ) A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  )  ->  E. s  e.  ( ( NN0  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } ) ( ran  ( 1st `  s
)  C_  ( 0..^ k )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) )
287270, 286syl 17 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  E. s  e.  ( ( NN0  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } ) ( ran  ( 1st `  s
)  C_  ( 0..^ k )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) )
288287ralrimiva 2966 . . 3  |-  ( ph  ->  A. k  e.  NN  E. s  e.  ( ( NN0  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ( ran  ( 1st `  s )  C_  ( 0..^ k )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) )
289 nnex 11026 . . . 4  |-  NN  e.  _V
290145, 271ixpconst 7918 . . . . . . 7  |-  X_ n  e.  ( 1 ... N
) NN0  =  ( NN0  ^m  ( 1 ... N ) )
291 omelon 8543 . . . . . . . . . 10  |-  om  e.  On
292 nn0ennn 12778 . . . . . . . . . . 11  |-  NN0  ~~  NN
293 nnenom 12779 . . . . . . . . . . 11  |-  NN  ~~  om
294292, 293entr2i 8011 . . . . . . . . . 10  |-  om  ~~  NN0
295 isnumi 8772 . . . . . . . . . 10  |-  ( ( om  e.  On  /\  om 
~~  NN0 )  ->  NN0  e.  dom  card )
296291, 294, 295mp2an 708 . . . . . . . . 9  |-  NN0  e.  dom  card
297296rgenw 2924 . . . . . . . 8  |-  A. n  e.  ( 1 ... N
) NN0  e.  dom  card
298 finixpnum 33394 . . . . . . . 8  |-  ( ( ( 1 ... N
)  e.  Fin  /\  A. n  e.  ( 1 ... N ) NN0 
e.  dom  card )  ->  X_ n  e.  ( 1 ... N ) NN0 
e.  dom  card )
29927, 297, 298mp2an 708 . . . . . . 7  |-  X_ n  e.  ( 1 ... N
) NN0  e.  dom  card
300290, 299eqeltrri 2698 . . . . . 6  |-  ( NN0 
^m  ( 1 ... N ) )  e. 
dom  card
301145, 145mapval 7869 . . . . . . . . 9  |-  ( ( 1 ... N )  ^m  ( 1 ... N ) )  =  { f  |  f : ( 1 ... N ) --> ( 1 ... N ) }
302 mapfi 8262 . . . . . . . . . 10  |-  ( ( ( 1 ... N
)  e.  Fin  /\  ( 1 ... N
)  e.  Fin )  ->  ( ( 1 ... N )  ^m  (
1 ... N ) )  e.  Fin )
30327, 27, 302mp2an 708 . . . . . . . . 9  |-  ( ( 1 ... N )  ^m  ( 1 ... N ) )  e. 
Fin
304301, 303eqeltrri 2698 . . . . . . . 8  |-  { f  |  f : ( 1 ... N ) --> ( 1 ... N
) }  e.  Fin
305 f1of 6137 . . . . . . . . 9  |-  ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
)  ->  f :
( 1 ... N
) --> ( 1 ... N ) )
306305ss2abi 3674 . . . . . . . 8  |-  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) }  C_  { f  |  f : ( 1 ... N ) --> ( 1 ... N
) }
307 ssfi 8180 . . . . . . . 8  |-  ( ( { f  |  f : ( 1 ... N ) --> ( 1 ... N ) }  e.  Fin  /\  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) }  C_  { f  |  f : ( 1 ... N ) --> ( 1 ... N
) } )  ->  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) }  e.  Fin )
308304, 306, 307mp2an 708 . . . . . . 7  |-  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) }  e.  Fin
309 finnum 8774 . . . . . . 7  |-  ( { f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) }  e.  Fin  ->  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) }  e.  dom  card )
310308, 309ax-mp 5 . . . . . 6  |-  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) }  e.  dom  card
311 xpnum 8777 . . . . . 6  |-  ( ( ( NN0  ^m  (
1 ... N ) )  e.  dom  card  /\  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) }  e.  dom  card )  ->  ( ( NN0  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  e. 
dom  card )
312300, 310, 311mp2an 708 . . . . 5  |-  ( ( NN0  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  e.  dom  card
313 ssrab2 3687 . . . . . . . 8  |-  { s  e.  ( ( NN0 
^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  |  ( ran  ( 1st `  s )  C_  (
0..^ k )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) } 
C_  ( ( NN0 
^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )
314313rgenw 2924 . . . . . . 7  |-  A. k  e.  NN  { s  e.  ( ( NN0  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  |  ( ran  ( 1st `  s )  C_  (
0..^ k )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) } 
C_  ( ( NN0 
^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )
315 ss2iun 4536 . . . . . . 7  |-  ( A. k  e.  NN  { s  e.  ( ( NN0 
^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  |  ( ran  ( 1st `  s )  C_  (
0..^ k )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) } 
C_  ( ( NN0 
^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  ->  U_ k  e.  NN  { s  e.  ( ( NN0  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  |  ( ran  ( 1st `  s
)  C_  ( 0..^ k )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) } 
C_  U_ k  e.  NN  ( ( NN0  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } ) )
316314, 315ax-mp 5 . . . . . 6  |-  U_ k  e.  NN  { s  e.  ( ( NN0  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  |  ( ran  ( 1st `  s )  C_  (
0..^ k )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) } 
C_  U_ k  e.  NN  ( ( NN0  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )
317 1nn 11031 . . . . . . 7  |-  1  e.  NN
318 ne0i 3921 . . . . . . 7  |-  ( 1  e.  NN  ->  NN  =/=  (/) )
319 iunconst 4529 . . . . . . 7  |-  ( NN  =/=  (/)  ->  U_ k  e.  NN  ( ( NN0 
^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  =  ( ( NN0  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } ) )
320317, 318, 319mp2b 10 . . . . . 6  |-  U_ k  e.  NN  ( ( NN0 
^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  =  ( ( NN0  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )
321316, 320sseqtri 3637 . . . . 5  |-  U_ k  e.  NN  { s  e.  ( ( NN0  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  |  ( ran  ( 1st `  s )  C_  (
0..^ k )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) } 
C_  ( ( NN0 
^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )
322 ssnum 8862 . . . . 5  |-  ( ( ( ( NN0  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  e. 
dom  card  /\  U_ k  e.  NN  { s  e.  ( ( NN0  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  |  ( ran  ( 1st `  s )  C_  (
0..^ k )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) } 
C_  ( ( NN0 
^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } ) )  ->  U_ k  e.  NN  { s  e.  ( ( NN0  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  |  ( ran  ( 1st `  s
)  C_  ( 0..^ k )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) }  e.  dom  card )
323312, 321, 322mp2an 708 . . . 4  |-  U_ k  e.  NN  { s  e.  ( ( NN0  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  |  ( ran  ( 1st `  s )  C_  (
0..^ k )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) }  e.  dom  card
324 fveq2 6191 . . . . . . . 8  |-  ( s  =  ( g `  k )  ->  ( 1st `  s )  =  ( 1st `  (
g `  k )
) )
325324rneqd 5353 . . . . . . 7  |-  ( s  =  ( g `  k )  ->  ran  ( 1st `  s )  =  ran  ( 1st `  ( g `  k
) ) )
326325sseq1d 3632 . . . . . 6  |-  ( s  =  ( g `  k )  ->  ( ran  ( 1st `  s
)  C_  ( 0..^ k )  <->  ran  ( 1st `  ( g `  k
) )  C_  (
0..^ k ) ) )
327 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( s  =  ( g `  k )  ->  ( 2nd `  s )  =  ( 2nd `  (
g `  k )
) )
328327imaeq1d 5465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( s  =  ( g `  k )  ->  (
( 2nd `  s
) " ( 1 ... j ) )  =  ( ( 2nd `  ( g `  k
) ) " (
1 ... j ) ) )
329328xpeq1d 5138 . . . . . . . . . . . . . . . . . . . 20  |-  ( s  =  ( g `  k )  ->  (
( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  =  ( ( ( 2nd `  (
g `  k )
) " ( 1 ... j ) )  X.  { 1 } ) )
330327imaeq1d 5465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( s  =  ( g `  k )  ->  (
( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  =  ( ( 2nd `  ( g `  k
) ) " (
( j  +  1 ) ... N ) ) )
331330xpeq1d 5138 . . . . . . . . . . . . . . . . . . . 20  |-  ( s  =  ( g `  k )  ->  (
( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } )  =  ( ( ( 2nd `  (
g `  k )
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) )
332329, 331uneq12d 3768 . . . . . . . . . . . . . . . . . . 19  |-  ( s  =  ( g `  k )  ->  (
( ( ( 2nd `  s ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) )  =  ( ( ( ( 2nd `  ( g `  k
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  (
g `  k )
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )
333324, 332oveq12d 6668 . . . . . . . . . . . . . . . . . 18  |-  ( s  =  ( g `  k )  ->  (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
334333oveq1d 6665 . . . . . . . . . . . . . . . . 17  |-  ( s  =  ( g `  k )  ->  (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) )  =  ( ( ( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) )
335334fveq2d 6195 . . . . . . . . . . . . . . . 16  |-  ( s  =  ( g `  k )  ->  ( F `  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) )  =  ( F `  ( ( ( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) )
336335fveq1d 6193 . . . . . . . . . . . . . . 15  |-  ( s  =  ( g `  k )  ->  (
( F `  (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  =  ( ( F `  ( ( ( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
) )
337336breq2d 4665 . . . . . . . . . . . . . 14  |-  ( s  =  ( g `  k )  ->  (
0  <_  ( ( F `  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  <->  0  <_  (
( F `  (
( ( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
) ) )
338333fveq1d 6193 . . . . . . . . . . . . . . 15  |-  ( s  =  ( g `  k )  ->  (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =  ( ( ( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
) )
339338neeq1d 2853 . . . . . . . . . . . . . 14  |-  ( s  =  ( g `  k )  ->  (
( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) ) `  b )  =/=  0  <->  ( ( ( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) )
340337, 339anbi12d 747 . . . . . . . . . . . . 13  |-  ( s  =  ( g `  k )  ->  (
( 0  <_  (
( F `  (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 )  <-> 
( 0  <_  (
( F `  (
( ( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) ) )
341340ralbidv 2986 . . . . . . . . . . . 12  |-  ( s  =  ( g `  k )  ->  ( A. b  e.  (
1 ... a ) ( 0  <_  ( ( F `  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 )  <->  A. b  e.  (
1 ... a ) ( 0  <_  ( ( F `  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) ) )
342341rabbidv 3189 . . . . . . . . . . 11  |-  ( s  =  ( g `  k )  ->  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) }  =  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } )
343342uneq2d 3767 . . . . . . . . . 10  |-  ( s  =  ( g `  k )  ->  ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } )  =  ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) )
344343supeq1d 8352 . . . . . . . . 9  |-  ( s  =  ( g `  k )  ->  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  )  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) )
345344eqeq2d 2632 . . . . . . . 8  |-  ( s  =  ( g `  k )  ->  (
i  =  sup (
( { 0 }  u.  { a  e.  ( 1 ... N
)  |  A. b  e.  ( 1 ... a
) ( 0  <_ 
( ( F `  ( ( ( 1st `  s )  oF  +  ( ( ( ( 2nd `  s
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  s
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  oF  /  ( ( 1 ... N )  X.  { k } ) ) ) `  b )  /\  (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  )  <->  i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) )
346345rexbidv 3052 . . . . . . 7  |-  ( s  =  ( g `  k )  ->  ( E. j  e.  (
0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  )  <->  E. j  e.  ( 0 ... N
) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) )
347346ralbidv 2986 . . . . . 6  |-  ( s  =  ( g `  k )  ->  ( A. i  e.  (
0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  )  <->  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) )
348326, 347anbi12d 747 . . . . 5  |-  ( s  =  ( g `  k )  ->  (
( ran  ( 1st `  s )  C_  (
0..^ k )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) )  <->  ( ran  ( 1st `  ( g `
 k ) ) 
C_  ( 0..^ k )  /\  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) ) )
349348ac6num 9301 . . . 4  |-  ( ( NN  e.  _V  /\  U_ k  e.  NN  {
s  e.  ( ( NN0  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  |  ( ran  ( 1st `  s
)  C_  ( 0..^ k )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) }  e.  dom  card  /\  A. k  e.  NN  E. s  e.  ( ( NN0  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } ) ( ran  ( 1st `  s
)  C_  ( 0..^ k )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) )  ->  E. g ( g : NN --> ( ( NN0  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  /\  A. k  e.  NN  ( ran  ( 1st `  ( g `  k ) )  C_  ( 0..^ k )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) ) )
350289, 323, 349mp3an12 1414 . . 3  |-  ( A. k  e.  NN  E. s  e.  ( ( NN0  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } ) ( ran  ( 1st `  s
)  C_  ( 0..^ k )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  s
)  oF  +  ( ( ( ( 2nd `  s )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  s )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) )  ->  E. g ( g : NN --> ( ( NN0 
^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  /\  A. k  e.  NN  ( ran  ( 1st `  (
g `  k )
)  C_  ( 0..^ k )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) ) )
351288, 350syl 17 . 2  |-  ( ph  ->  E. g ( g : NN --> ( ( NN0  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  /\  A. k  e.  NN  ( ran  ( 1st `  ( g `  k ) )  C_  ( 0..^ k )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) ) )
3521ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  g : NN --> ( ( NN0 
^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } ) )  /\  A. k  e.  NN  ( ran  ( 1st `  ( g `  k ) )  C_  ( 0..^ k )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) )  ->  N  e.  NN )
353 poimir.r . . . 4  |-  R  =  ( Xt_ `  (
( 1 ... N
)  X.  { (
topGen `  ran  (,) ) } ) )
354 poimir.1 . . . . 5  |-  ( ph  ->  F  e.  ( ( Rt  I )  Cn  R
) )
355354ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  g : NN --> ( ( NN0 
^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } ) )  /\  A. k  e.  NN  ( ran  ( 1st `  ( g `  k ) )  C_  ( 0..^ k )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) )  ->  F  e.  ( ( Rt  I )  Cn  R
) )
356 eqid 2622 . . . 4  |-  ( ( F `  ( ( ( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... m ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( m  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ p } ) ) ) `  n
)  =  ( ( F `  ( ( ( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... m ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( m  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ p } ) ) ) `  n
)
357 simplr 792 . . . 4  |-  ( ( ( ph  /\  g : NN --> ( ( NN0 
^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } ) )  /\  A. k  e.  NN  ( ran  ( 1st `  ( g `  k ) )  C_  ( 0..^ k )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) )  ->  g : NN --> ( ( NN0  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } ) )
358 simpl 473 . . . . . . 7  |-  ( ( ran  ( 1st `  (
g `  k )
)  C_  ( 0..^ k )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) )  ->  ran  ( 1st `  (
g `  k )
)  C_  ( 0..^ k ) )
359358ralimi 2952 . . . . . 6  |-  ( A. k  e.  NN  ( ran  ( 1st `  (
g `  k )
)  C_  ( 0..^ k )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) )  ->  A. k  e.  NN  ran  ( 1st `  (
g `  k )
)  C_  ( 0..^ k ) )
360359adantl 482 . . . . 5  |-  ( ( ( ph  /\  g : NN --> ( ( NN0 
^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } ) )  /\  A. k  e.  NN  ( ran  ( 1st `  ( g `  k ) )  C_  ( 0..^ k )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) )  ->  A. k  e.  NN  ran  ( 1st `  (
g `  k )
)  C_  ( 0..^ k ) )
361 fveq2 6191 . . . . . . . . 9  |-  ( k  =  p  ->  (
g `  k )  =  ( g `  p ) )
362361fveq2d 6195 . . . . . . . 8  |-  ( k  =  p  ->  ( 1st `  ( g `  k ) )  =  ( 1st `  (
g `  p )
) )
363362rneqd 5353 . . . . . . 7  |-  ( k  =  p  ->  ran  ( 1st `  ( g `
 k ) )  =  ran  ( 1st `  ( g `  p
) ) )
364 oveq2 6658 . . . . . . 7  |-  ( k  =  p  ->  (
0..^ k )  =  ( 0..^ p ) )
365363, 364sseq12d 3634 . . . . . 6  |-  ( k  =  p  ->  ( ran  ( 1st `  (
g `  k )
)  C_  ( 0..^ k )  <->  ran  ( 1st `  ( g `  p
) )  C_  (
0..^ p ) ) )
366365rspccva 3308 . . . . 5  |-  ( ( A. k  e.  NN  ran  ( 1st `  (
g `  k )
)  C_  ( 0..^ k )  /\  p  e.  NN )  ->  ran  ( 1st `  ( g `
 p ) ) 
C_  ( 0..^ p ) )
367360, 366sylan 488 . . . 4  |-  ( ( ( ( ph  /\  g : NN --> ( ( NN0  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )  /\  A. k  e.  NN  ( ran  ( 1st `  (
g `  k )
)  C_  ( 0..^ k )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) )  /\  p  e.  NN )  ->  ran  ( 1st `  ( g `  p
) )  C_  (
0..^ p ) )
368 simpll 790 . . . . . 6  |-  ( ( ( ph  /\  g : NN --> ( ( NN0 
^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } ) )  /\  A. k  e.  NN  ( ran  ( 1st `  ( g `  k ) )  C_  ( 0..^ k )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) )  ->  ph )
369 poimir.2 . . . . . 6  |-  ( (
ph  /\  ( n  e.  ( 1 ... N
)  /\  z  e.  I  /\  ( z `  n )  =  0 ) )  ->  (
( F `  z
) `  n )  <_  0 )
370368, 369sylan 488 . . . . 5  |-  ( ( ( ( ph  /\  g : NN --> ( ( NN0  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )  /\  A. k  e.  NN  ( ran  ( 1st `  (
g `  k )
)  C_  ( 0..^ k )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) )  /\  ( n  e.  ( 1 ... N
)  /\  z  e.  I  /\  ( z `  n )  =  0 ) )  ->  (
( F `  z
) `  n )  <_  0 )
371 eqid 2622 . . . . 5  |-  ( ( 1st `  ( g `
 p ) )  oF  +  ( ( ( ( 2nd `  ( g `  p
) ) " (
1 ... m ) )  X.  { 1 } )  u.  ( ( ( 2nd `  (
g `  p )
) " ( ( m  +  1 ) ... N ) )  X.  { 0 } ) ) )  =  ( ( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... m ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( m  +  1 ) ... N ) )  X. 
{ 0 } ) ) )
372 simpr 477 . . . . . . . 8  |-  ( ( ran  ( 1st `  (
g `  k )
)  C_  ( 0..^ k )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) )  ->  A. i  e.  (
0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) )
373372ralimi 2952 . . . . . . 7  |-  ( A. k  e.  NN  ( ran  ( 1st `  (
g `  k )
)  C_  ( 0..^ k )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) )  ->  A. k  e.  NN  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) )
374373adantl 482 . . . . . 6  |-  ( ( ( ph  /\  g : NN --> ( ( NN0 
^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } ) )  /\  A. k  e.  NN  ( ran  ( 1st `  ( g `  k ) )  C_  ( 0..^ k )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) )  ->  A. k  e.  NN  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) )
375361fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  =  p  ->  ( 2nd `  ( g `  k ) )  =  ( 2nd `  (
g `  p )
) )
376375imaeq1d 5465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  p  ->  (
( 2nd `  (
g `  k )
) " ( 1 ... j ) )  =  ( ( 2nd `  ( g `  p
) ) " (
1 ... j ) ) )
377376xpeq1d 5138 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  p  ->  (
( ( 2nd `  (
g `  k )
) " ( 1 ... j ) )  X.  { 1 } )  =  ( ( ( 2nd `  (
g `  p )
) " ( 1 ... j ) )  X.  { 1 } ) )
378375imaeq1d 5465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  p  ->  (
( 2nd `  (
g `  k )
) " ( ( j  +  1 ) ... N ) )  =  ( ( 2nd `  ( g `  p
) ) " (
( j  +  1 ) ... N ) ) )
379378xpeq1d 5138 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  p  ->  (
( ( 2nd `  (
g `  k )
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } )  =  ( ( ( 2nd `  (
g `  p )
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) )
380377, 379uneq12d 3768 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  p  ->  (
( ( ( 2nd `  ( g `  k
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  (
g `  k )
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) )  =  ( ( ( ( 2nd `  ( g `  p
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  (
g `  p )
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )
381362, 380oveq12d 6668 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  p  ->  (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
382 sneq 4187 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  p  ->  { k }  =  { p } )
383382xpeq2d 5139 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  p  ->  (
( 1 ... N
)  X.  { k } )  =  ( ( 1 ... N
)  X.  { p } ) )
384381, 383oveq12d 6668 . . . . . . . . . . . . . . . . 17  |-  ( k  =  p  ->  (
( ( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) )  =  ( ( ( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ p } ) ) )
385384fveq2d 6195 . . . . . . . . . . . . . . . 16  |-  ( k  =  p  ->  ( F `  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) )  =  ( F `  ( ( ( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ p } ) ) ) )
386385fveq1d 6193 . . . . . . . . . . . . . . 15  |-  ( k  =  p  ->  (
( F `  (
( ( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  =  ( ( F `  ( ( ( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ p } ) ) ) `  b
) )
387386breq2d 4665 . . . . . . . . . . . . . 14  |-  ( k  =  p  ->  (
0  <_  ( ( F `  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  <->  0  <_  (
( F `  (
( ( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ p } ) ) ) `  b
) ) )
388381fveq1d 6193 . . . . . . . . . . . . . . 15  |-  ( k  =  p  ->  (
( ( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =  ( ( ( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
) )
389388neeq1d 2853 . . . . . . . . . . . . . 14  |-  ( k  =  p  ->  (
( ( ( 1st `  ( g `  k
) )  oF  +  ( ( ( ( 2nd `  (
g `  k )
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  (
g `  k )
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) ) `  b )  =/=  0  <->  ( ( ( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) )
390387, 389anbi12d 747 . . . . . . . . . . . . 13  |-  ( k  =  p  ->  (
( 0  <_  (
( F `  (
( ( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 )  <-> 
( 0  <_  (
( F `  (
( ( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ p } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) ) )
391390ralbidv 2986 . . . . . . . . . . . 12  |-  ( k  =  p  ->  ( A. b  e.  (
1 ... a ) ( 0  <_  ( ( F `  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 )  <->  A. b  e.  (
1 ... a ) ( 0  <_  ( ( F `  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ p } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) ) )
392391rabbidv 3189 . . . . . . . . . . 11  |-  ( k  =  p  ->  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) }  =  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ p } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } )
393392uneq2d 3767 . . . . . . . . . 10  |-  ( k  =  p  ->  ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } )  =  ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ p } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) )
394393supeq1d 8352 . . . . . . . . 9  |-  ( k  =  p  ->  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  )  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ p } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) )
395394eqeq2d 2632 . . . . . . . 8  |-  ( k  =  p  ->  (
i  =  sup (
( { 0 }  u.  { a  e.  ( 1 ... N
)  |  A. b  e.  ( 1 ... a
) ( 0  <_ 
( ( F `  ( ( ( 1st `  ( g `  k
) )  oF  +  ( ( ( ( 2nd `  (
g `  k )
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  (
g `  k )
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  oF  /  ( ( 1 ... N )  X.  { k } ) ) ) `  b )  /\  (
( ( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  )  <->  i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ p } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) )
396395rexbidv 3052 . . . . . . 7  |-  ( k  =  p  ->  ( E. j  e.  (
0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  )  <->  E. j  e.  ( 0 ... N
) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ p } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) )
397 eqeq1 2626 . . . . . . . . 9  |-  ( i  =  q  ->  (
i  =  sup (
( { 0 }  u.  { a  e.  ( 1 ... N
)  |  A. b  e.  ( 1 ... a
) ( 0  <_ 
( ( F `  ( ( ( 1st `  ( g `  p
) )  oF  +  ( ( ( ( 2nd `  (
g `  p )
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  (
g `  p )
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  oF  /  ( ( 1 ... N )  X.  { p }
) ) ) `  b )  /\  (
( ( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  )  <->  q  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ p } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) )
398397rexbidv 3052 . . . . . . . 8  |-  ( i  =  q  ->  ( E. j  e.  (
0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ p } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  )  <->  E. j  e.  ( 0 ... N
) q  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ p } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) )
399 oveq2 6658 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( j  =  m  ->  (
1 ... j )  =  ( 1 ... m
) )
400399imaeq2d 5466 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( j  =  m  ->  (
( 2nd `  (
g `  p )
) " ( 1 ... j ) )  =  ( ( 2nd `  ( g `  p
) ) " (
1 ... m ) ) )
401400xpeq1d 5138 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  =  m  ->  (
( ( 2nd `  (
g `  p )
) " ( 1 ... j ) )  X.  { 1 } )  =  ( ( ( 2nd `  (
g `  p )
) " ( 1 ... m ) )  X.  { 1 } ) )
402 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( j  =  m  ->  (
j  +  1 )  =  ( m  + 
1 ) )
403402oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( j  =  m  ->  (
( j  +  1 ) ... N )  =  ( ( m  +  1 ) ... N ) )
404403imaeq2d 5466 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( j  =  m  ->  (
( 2nd `  (
g `  p )
) " ( ( j  +  1 ) ... N ) )  =  ( ( 2nd `  ( g `  p
) ) " (
( m  +  1 ) ... N ) ) )
405404xpeq1d 5138 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  =  m  ->  (
( ( 2nd `  (
g `  p )
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } )  =  ( ( ( 2nd `  (
g `  p )
) " ( ( m  +  1 ) ... N ) )  X.  { 0 } ) )
406401, 405uneq12d 3768 . . . . . . . . . . . . . . . . . . . 20  |-  ( j  =  m  ->  (
( ( ( 2nd `  ( g `  p
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  (
g `  p )
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) )  =  ( ( ( ( 2nd `  ( g `  p
) ) " (
1 ... m ) )  X.  { 1 } )  u.  ( ( ( 2nd `  (
g `  p )
) " ( ( m  +  1 ) ... N ) )  X.  { 0 } ) ) )
407406oveq2d 6666 . . . . . . . . . . . . . . . . . . 19  |-  ( j  =  m  ->  (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... m ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( m  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
408407oveq1d 6665 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  m  ->  (
( ( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ p } ) )  =  ( ( ( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... m ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( m  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ p } ) ) )
409408fveq2d 6195 . . . . . . . . . . . . . . . . 17  |-  ( j  =  m  ->  ( F `  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ p } ) ) )  =  ( F `  ( ( ( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... m ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( m  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ p } ) ) ) )
410409fveq1d 6193 . . . . . . . . . . . . . . . 16  |-  ( j  =  m  ->  (
( F `  (
( ( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ p } ) ) ) `  b
)  =  ( ( F `  ( ( ( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... m ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( m  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ p } ) ) ) `  b
) )
411410breq2d 4665 . . . . . . . . . . . . . . 15  |-  ( j  =  m  ->  (
0  <_  ( ( F `  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ p } ) ) ) `  b
)  <->  0  <_  (
( F `  (
( ( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... m ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( m  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ p } ) ) ) `  b
) ) )
412407fveq1d 6193 . . . . . . . . . . . . . . . 16  |-  ( j  =  m  ->  (
( ( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =  ( ( ( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... m ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( m  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
) )
413412neeq1d 2853 . . . . . . . . . . . . . . 15  |-  ( j  =  m  ->  (
( ( ( 1st `  ( g `  p
) )  oF  +  ( ( ( ( 2nd `  (
g `  p )
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  (
g `  p )
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) ) `  b )  =/=  0  <->  ( ( ( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... m ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( m  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) )
414411, 413anbi12d 747 . . . . . . . . . . . . . 14  |-  ( j  =  m  ->  (
( 0  <_  (
( F `  (
( ( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ p } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 )  <-> 
( 0  <_  (
( F `  (
( ( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... m ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( m  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ p } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... m ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( m  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) ) )
415414ralbidv 2986 . . . . . . . . . . . . 13  |-  ( j  =  m  ->  ( A. b  e.  (
1 ... a ) ( 0  <_  ( ( F `  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ p } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 )  <->  A. b  e.  (
1 ... a ) ( 0  <_  ( ( F `  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... m ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( m  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ p } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... m ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( m  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) ) )
416415rabbidv 3189 . . . . . . . . . . . 12  |-  ( j  =  m  ->  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ p } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) }  =  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... m ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( m  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ p } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... m ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( m  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } )
417416uneq2d 3767 . . . . . . . . . . 11  |-  ( j  =  m  ->  ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ p } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } )  =  ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... m ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( m  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ p } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... m ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( m  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) )
418417supeq1d 8352 . . . . . . . . . 10  |-  ( j  =  m  ->  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ p } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  )  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... m ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( m  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ p } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... m ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( m  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) )
419418eqeq2d 2632 . . . . . . . . 9  |-  ( j  =  m  ->  (
q  =  sup (
( { 0 }  u.  { a  e.  ( 1 ... N
)  |  A. b  e.  ( 1 ... a
) ( 0  <_ 
( ( F `  ( ( ( 1st `  ( g `  p
) )  oF  +  ( ( ( ( 2nd `  (
g `  p )
) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  (
g `  p )
) " ( ( j  +  1 ) ... N ) )  X.  { 0 } ) ) )  oF  /  ( ( 1 ... N )  X.  { p }
) ) ) `  b )  /\  (
( ( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  )  <->  q  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... m ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( m  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ p } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... m ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( m  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) )
420419cbvrexv 3172 . . . . . . . 8  |-  ( E. j  e.  ( 0 ... N ) q  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ p } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  )  <->  E. m  e.  ( 0 ... N
) q  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... m ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( m  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ p } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... m ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( m  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) )
421398, 420syl6bb 276 . . . . . . 7  |-  ( i  =  q  ->  ( E. j  e.  (
0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ p } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  )  <->  E. m  e.  ( 0 ... N
) q  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... m ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( m  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ p } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... m ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( m  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) )
422396, 421rspc2v 3322 . . . . . 6  |-  ( ( p  e.  NN  /\  q  e.  ( 0 ... N ) )  ->  ( A. k  e.  NN  A. i  e.  ( 0 ... N
) E. j  e.  ( 0 ... N
) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  )  ->  E. m  e.  ( 0 ... N
) q  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  |  A. b  e.  ( 1 ... a ) ( 0  <_  ( ( F `  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... m ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( m  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ p } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... m ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( m  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) )
423374, 422mpan9 486 . . . . 5  |-  ( ( ( ( ph  /\  g : NN --> ( ( NN0  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )  /\  A. k  e.  NN  ( ran  ( 1st `  (
g `  k )
)  C_  ( 0..^ k )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) )  /\  ( p  e.  NN  /\  q  e.  ( 0 ... N
) ) )  ->  E. m  e.  (
0 ... N ) q  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... m ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( m  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ p } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... m ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( m  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) )
424352, 142, 353, 355, 370, 371, 357, 367, 423poimirlem31 33440 . . . 4  |-  ( ( ( ( ph  /\  g : NN --> ( ( NN0  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )  /\  A. k  e.  NN  ( ran  ( 1st `  (
g `  k )
)  C_  ( 0..^ k )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) )  /\  ( p  e.  NN  /\  n  e.  ( 1 ... N
)  /\  r  e.  {  <_  ,  `'  <_  } ) )  ->  E. m  e.  ( 0 ... N
) 0 r ( ( F `  (
( ( 1st `  (
g `  p )
)  oF  +  ( ( ( ( 2nd `  ( g `
 p ) )
" ( 1 ... m ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 p ) )
" ( ( m  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ p } ) ) ) `  n
) )
425352, 142, 353, 355, 356, 357, 367, 424poimirlem30 33439 . . 3  |-  ( ( ( ph  /\  g : NN --> ( ( NN0 
^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } ) )  /\  A. k  e.  NN  ( ran  ( 1st `  ( g `  k ) )  C_  ( 0..^ k )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) )  ->  E. c  e.  I  A. n  e.  (
1 ... N ) A. v  e.  ( Rt  I
) ( c  e.  v  ->  A. r  e.  {  <_  ,  `'  <_  } E. z  e.  v  0 r ( ( F `  z
) `  n )
) )
426425anasss 679 . 2  |-  ( (
ph  /\  ( g : NN --> ( ( NN0 
^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  /\  A. k  e.  NN  ( ran  ( 1st `  (
g `  k )
)  C_  ( 0..^ k )  /\  A. i  e.  ( 0 ... N ) E. j  e.  ( 0 ... N ) i  =  sup ( ( { 0 }  u.  { a  e.  ( 1 ... N )  | 
A. b  e.  ( 1 ... a ) ( 0  <_  (
( F `  (
( ( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  oF  /  ( ( 1 ... N )  X. 
{ k } ) ) ) `  b
)  /\  ( (
( 1st `  (
g `  k )
)  oF  +  ( ( ( ( 2nd `  ( g `
 k ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( g `
 k ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) `  b
)  =/=  0 ) } ) ,  RR ,  <  ) ) ) )  ->  E. c  e.  I  A. n  e.  ( 1 ... N
) A. v  e.  ( Rt  I ) ( c  e.  v  ->  A. r  e.  {  <_  ,  `'  <_  } E. z  e.  v  0 r ( ( F `  z
) `  n )
) )
427351, 426exlimddv 1863 1  |-  ( ph  ->  E. c  e.  I  A. n  e.  (
1 ... N ) A. v  e.  ( Rt  I
) ( c  e.  v  ->  A. r  e.  {  <_  ,  `'  <_  } E. z  e.  v  0 r ( ( F `  z
) `  n )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    u. cun 3572    C_ wss 3574   (/)c0 3915   {csn 4177   {cpr 4179   U_ciun 4520   class class class wbr 4653    Or wor 5034    X. cxp 5112   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117   Oncon0 5723    Fn wfn 5883   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    oFcof 6895   omcom 7065   1stc1st 7166   2ndc2nd 7167    ^m cmap 7857   X_cixp 7908    ~~ cen 7952   Fincfn 7955   supcsup 8346   cardccrd 8761   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   (,)cioo 12175   [,]cicc 12178   ...cfz 12326  ..^cfzo 12465   ↾t crest 16081   topGenctg 16098   Xt_cpt 16099    Cn ccn 21028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-rest 16083  df-topgen 16104  df-pt 16105  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-lp 20940  df-cn 21031  df-cnp 21032  df-t1 21118  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-hmph 21559  df-ii 22680
This theorem is referenced by:  poimir  33442
  Copyright terms: Public domain W3C validator