MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predpo Structured version   Visualization version   Unicode version

Theorem predpo 5698
Description: Property of the precessor class for partial orderings. (Contributed by Scott Fenton, 28-Apr-2012.)
Assertion
Ref Expression
predpo  |-  ( ( R  Po  A  /\  X  e.  A )  ->  ( Y  e.  Pred ( R ,  A ,  X )  ->  Pred ( R ,  A ,  Y )  C_  Pred ( R ,  A ,  X ) ) )

Proof of Theorem predpo
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 predel 5697 . 2  |-  ( Y  e.  Pred ( R ,  A ,  X )  ->  Y  e.  A )
2 elpredg 5694 . . . . . . . . . . 11  |-  ( ( X  e.  A  /\  Y  e.  A )  ->  ( Y  e.  Pred ( R ,  A ,  X )  <->  Y R X ) )
32adantll 750 . . . . . . . . . 10  |-  ( ( ( R  Po  A  /\  X  e.  A
)  /\  Y  e.  A )  ->  ( Y  e.  Pred ( R ,  A ,  X
)  <->  Y R X ) )
4 potr 5047 . . . . . . . . . . . . . . . 16  |-  ( ( R  Po  A  /\  ( z  e.  A  /\  Y  e.  A  /\  X  e.  A
) )  ->  (
( z R Y  /\  Y R X )  ->  z R X ) )
543exp2 1285 . . . . . . . . . . . . . . 15  |-  ( R  Po  A  ->  (
z  e.  A  -> 
( Y  e.  A  ->  ( X  e.  A  ->  ( ( z R Y  /\  Y R X )  ->  z R X ) ) ) ) )
65com24 95 . . . . . . . . . . . . . 14  |-  ( R  Po  A  ->  ( X  e.  A  ->  ( Y  e.  A  -> 
( z  e.  A  ->  ( ( z R Y  /\  Y R X )  ->  z R X ) ) ) ) )
76imp31 448 . . . . . . . . . . . . 13  |-  ( ( ( R  Po  A  /\  X  e.  A
)  /\  Y  e.  A )  ->  (
z  e.  A  -> 
( ( z R Y  /\  Y R X )  ->  z R X ) ) )
87com13 88 . . . . . . . . . . . 12  |-  ( ( z R Y  /\  Y R X )  -> 
( z  e.  A  ->  ( ( ( R  Po  A  /\  X  e.  A )  /\  Y  e.  A )  ->  z R X ) ) )
98ex 450 . . . . . . . . . . 11  |-  ( z R Y  ->  ( Y R X  ->  (
z  e.  A  -> 
( ( ( R  Po  A  /\  X  e.  A )  /\  Y  e.  A )  ->  z R X ) ) ) )
109com14 96 . . . . . . . . . 10  |-  ( ( ( R  Po  A  /\  X  e.  A
)  /\  Y  e.  A )  ->  ( Y R X  ->  (
z  e.  A  -> 
( z R Y  ->  z R X ) ) ) )
113, 10sylbid 230 . . . . . . . . 9  |-  ( ( ( R  Po  A  /\  X  e.  A
)  /\  Y  e.  A )  ->  ( Y  e.  Pred ( R ,  A ,  X
)  ->  ( z  e.  A  ->  ( z R Y  ->  z R X ) ) ) )
1211ex 450 . . . . . . . 8  |-  ( ( R  Po  A  /\  X  e.  A )  ->  ( Y  e.  A  ->  ( Y  e.  Pred ( R ,  A ,  X )  ->  (
z  e.  A  -> 
( z R Y  ->  z R X ) ) ) ) )
1312com23 86 . . . . . . 7  |-  ( ( R  Po  A  /\  X  e.  A )  ->  ( Y  e.  Pred ( R ,  A ,  X )  ->  ( Y  e.  A  ->  ( z  e.  A  -> 
( z R Y  ->  z R X ) ) ) ) )
14133imp 1256 . . . . . 6  |-  ( ( ( R  Po  A  /\  X  e.  A
)  /\  Y  e.  Pred ( R ,  A ,  X )  /\  Y  e.  A )  ->  (
z  e.  A  -> 
( z R Y  ->  z R X ) ) )
1514imdistand 728 . . . . 5  |-  ( ( ( R  Po  A  /\  X  e.  A
)  /\  Y  e.  Pred ( R ,  A ,  X )  /\  Y  e.  A )  ->  (
( z  e.  A  /\  z R Y )  ->  ( z  e.  A  /\  z R X ) ) )
16 vex 3203 . . . . . . 7  |-  z  e. 
_V
1716elpred 5693 . . . . . 6  |-  ( Y  e.  A  ->  (
z  e.  Pred ( R ,  A ,  Y )  <->  ( z  e.  A  /\  z R Y ) ) )
18173ad2ant3 1084 . . . . 5  |-  ( ( ( R  Po  A  /\  X  e.  A
)  /\  Y  e.  Pred ( R ,  A ,  X )  /\  Y  e.  A )  ->  (
z  e.  Pred ( R ,  A ,  Y )  <->  ( z  e.  A  /\  z R Y ) ) )
1916elpred 5693 . . . . . . 7  |-  ( X  e.  A  ->  (
z  e.  Pred ( R ,  A ,  X )  <->  ( z  e.  A  /\  z R X ) ) )
2019adantl 482 . . . . . 6  |-  ( ( R  Po  A  /\  X  e.  A )  ->  ( z  e.  Pred ( R ,  A ,  X )  <->  ( z  e.  A  /\  z R X ) ) )
21203ad2ant1 1082 . . . . 5  |-  ( ( ( R  Po  A  /\  X  e.  A
)  /\  Y  e.  Pred ( R ,  A ,  X )  /\  Y  e.  A )  ->  (
z  e.  Pred ( R ,  A ,  X )  <->  ( z  e.  A  /\  z R X ) ) )
2215, 18, 213imtr4d 283 . . . 4  |-  ( ( ( R  Po  A  /\  X  e.  A
)  /\  Y  e.  Pred ( R ,  A ,  X )  /\  Y  e.  A )  ->  (
z  e.  Pred ( R ,  A ,  Y )  ->  z  e.  Pred ( R ,  A ,  X )
) )
2322ssrdv 3609 . . 3  |-  ( ( ( R  Po  A  /\  X  e.  A
)  /\  Y  e.  Pred ( R ,  A ,  X )  /\  Y  e.  A )  ->  Pred ( R ,  A ,  Y )  C_  Pred ( R ,  A ,  X ) )
24233exp 1264 . 2  |-  ( ( R  Po  A  /\  X  e.  A )  ->  ( Y  e.  Pred ( R ,  A ,  X )  ->  ( Y  e.  A  ->  Pred ( R ,  A ,  Y )  C_  Pred ( R ,  A ,  X ) ) ) )
251, 24mpdi 45 1  |-  ( ( R  Po  A  /\  X  e.  A )  ->  ( Y  e.  Pred ( R ,  A ,  X )  ->  Pred ( R ,  A ,  Y )  C_  Pred ( R ,  A ,  X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    e. wcel 1990    C_ wss 3574   class class class wbr 4653    Po wpo 5033   Predcpred 5679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-po 5035  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680
This theorem is referenced by:  predso  5699  trpredpo  31735
  Copyright terms: Public domain W3C validator