Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inecmo Structured version   Visualization version   Unicode version

Theorem inecmo 34120
Description: Lemma for ~? dfeldisj5 (via inecmo2 34121), ~? dfdisjs5 , ~? dfdisjALTV5 , ~? eldisjs5 (via inecmo3 34126, ~? cosscnvssid5 ), ~? dffunsALTV5 (via ineccnvmo 34122, ineccnvmo2 34125), and ~? dffunALTV5 (via ~? cossssid5 ). (Contributed by Peter Mazsa, 29-May-2018.)
Hypothesis
Ref Expression
inecmo.1  |-  ( x  =  y  ->  B  =  C )
Assertion
Ref Expression
inecmo  |-  ( Rel 
R  ->  ( A. x  e.  A  A. y  e.  A  (
x  =  y  \/  ( [ B ] R  i^i  [ C ] R )  =  (/) ) 
<-> 
A. z E* x  e.  A  B R
z ) )
Distinct variable groups:    x, A, y, z    y, B, z   
x, C, z    x, R, y, z
Allowed substitution hints:    B( x)    C( y)

Proof of Theorem inecmo
StepHypRef Expression
1 relelec 7787 . . . . . . 7  |-  ( Rel 
R  ->  ( z  e.  [ B ] R  <->  B R z ) )
2 relelec 7787 . . . . . . 7  |-  ( Rel 
R  ->  ( z  e.  [ C ] R  <->  C R z ) )
31, 2anbi12d 747 . . . . . 6  |-  ( Rel 
R  ->  ( (
z  e.  [ B ] R  /\  z  e.  [ C ] R
)  <->  ( B R z  /\  C R z ) ) )
43imbi1d 331 . . . . 5  |-  ( Rel 
R  ->  ( (
( z  e.  [ B ] R  /\  z  e.  [ C ] R
)  ->  x  =  y )  <->  ( ( B R z  /\  C R z )  ->  x  =  y )
) )
542ralbidv 2989 . . . 4  |-  ( Rel 
R  ->  ( A. x  e.  A  A. y  e.  A  (
( z  e.  [ B ] R  /\  z  e.  [ C ] R
)  ->  x  =  y )  <->  A. x  e.  A  A. y  e.  A  ( ( B R z  /\  C R z )  ->  x  =  y )
) )
6 inecmo.1 . . . . . 6  |-  ( x  =  y  ->  B  =  C )
76breq1d 4663 . . . . 5  |-  ( x  =  y  ->  ( B R z  <->  C R
z ) )
87rmo4 3399 . . . 4  |-  ( E* x  e.  A  B R z  <->  A. x  e.  A  A. y  e.  A  ( ( B R z  /\  C R z )  ->  x  =  y )
)
95, 8syl6rbbr 279 . . 3  |-  ( Rel 
R  ->  ( E* x  e.  A  B R z  <->  A. x  e.  A  A. y  e.  A  ( (
z  e.  [ B ] R  /\  z  e.  [ C ] R
)  ->  x  =  y ) ) )
109albidv 1849 . 2  |-  ( Rel 
R  ->  ( A. z E* x  e.  A  B R z  <->  A. z A. x  e.  A  A. y  e.  A  ( ( z  e. 
[ B ] R  /\  z  e.  [ C ] R )  ->  x  =  y ) ) )
11 ineleq 34119 . . 3  |-  ( A. x  e.  A  A. y  e.  A  (
x  =  y  \/  ( [ B ] R  i^i  [ C ] R )  =  (/) ) 
<-> 
A. x  e.  A  A. z A. y  e.  A  ( ( z  e.  [ B ] R  /\  z  e.  [ C ] R )  ->  x  =  y )
)
12 ralcom4 3224 . . 3  |-  ( A. x  e.  A  A. z A. y  e.  A  ( ( z  e. 
[ B ] R  /\  z  e.  [ C ] R )  ->  x  =  y )  <->  A. z A. x  e.  A  A. y  e.  A  ( ( z  e. 
[ B ] R  /\  z  e.  [ C ] R )  ->  x  =  y ) )
1311, 12bitri 264 . 2  |-  ( A. x  e.  A  A. y  e.  A  (
x  =  y  \/  ( [ B ] R  i^i  [ C ] R )  =  (/) ) 
<-> 
A. z A. x  e.  A  A. y  e.  A  ( (
z  e.  [ B ] R  /\  z  e.  [ C ] R
)  ->  x  =  y ) )
1410, 13syl6rbbr 279 1  |-  ( Rel 
R  ->  ( A. x  e.  A  A. y  e.  A  (
x  =  y  \/  ( [ B ] R  i^i  [ C ] R )  =  (/) ) 
<-> 
A. z E* x  e.  A  B R
z ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990   A.wral 2912   E*wrmo 2915    i^i cin 3573   (/)c0 3915   class class class wbr 4653   Rel wrel 5119   [cec 7740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ec 7744
This theorem is referenced by:  inecmo2  34121  ineccnvmo  34122
  Copyright terms: Public domain W3C validator