Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  int-ineqtransd Structured version   Visualization version   Unicode version

Theorem int-ineqtransd 38497
Description: InequalityTransitivity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
Hypotheses
Ref Expression
int-ineqtransd.1  |-  ( ph  ->  A  e.  RR )
int-ineqtransd.2  |-  ( ph  ->  B  e.  RR )
int-ineqtransd.3  |-  ( ph  ->  C  e.  RR )
int-ineqtransd.4  |-  ( ph  ->  B  <_  A )
int-ineqtransd.5  |-  ( ph  ->  C  <_  B )
Assertion
Ref Expression
int-ineqtransd  |-  ( ph  ->  C  <_  A )

Proof of Theorem int-ineqtransd
StepHypRef Expression
1 int-ineqtransd.3 . 2  |-  ( ph  ->  C  e.  RR )
2 int-ineqtransd.2 . 2  |-  ( ph  ->  B  e.  RR )
3 int-ineqtransd.1 . 2  |-  ( ph  ->  A  e.  RR )
4 int-ineqtransd.5 . 2  |-  ( ph  ->  C  <_  B )
5 int-ineqtransd.4 . 2  |-  ( ph  ->  B  <_  A )
61, 2, 3, 4, 5letrd 10194 1  |-  ( ph  ->  C  <_  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1990   class class class wbr 4653   RRcr 9935    <_ cle 10075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator