MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfnn3 Structured version   Visualization version   Unicode version

Theorem dfnn3 11034
Description: Alternate definition of the set of positive integers. Definition of positive integers in [Apostol] p. 22. (Contributed by NM, 3-Jul-2005.)
Assertion
Ref Expression
dfnn3  |-  NN  =  |^| { x  |  ( x  C_  RR  /\  1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
Distinct variable group:    x, y

Proof of Theorem dfnn3
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eleq2 2690 . . . 4  |-  ( x  =  z  ->  (
1  e.  x  <->  1  e.  z ) )
2 eleq2 2690 . . . . 5  |-  ( x  =  z  ->  (
( y  +  1 )  e.  x  <->  ( y  +  1 )  e.  z ) )
32raleqbi1dv 3146 . . . 4  |-  ( x  =  z  ->  ( A. y  e.  x  ( y  +  1 )  e.  x  <->  A. y  e.  z  ( y  +  1 )  e.  z ) )
41, 3anbi12d 747 . . 3  |-  ( x  =  z  ->  (
( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  <-> 
( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) ) )
5 dfnn2 11033 . . . . 5  |-  NN  =  |^| { z  |  ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) }
65eqeq2i 2634 . . . 4  |-  ( x  =  NN  <->  x  =  |^| { z  |  ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) } )
7 eleq2 2690 . . . . 5  |-  ( x  =  NN  ->  (
1  e.  x  <->  1  e.  NN ) )
8 eleq2 2690 . . . . . 6  |-  ( x  =  NN  ->  (
( y  +  1 )  e.  x  <->  ( y  +  1 )  e.  NN ) )
98raleqbi1dv 3146 . . . . 5  |-  ( x  =  NN  ->  ( A. y  e.  x  ( y  +  1 )  e.  x  <->  A. y  e.  NN  ( y  +  1 )  e.  NN ) )
107, 9anbi12d 747 . . . 4  |-  ( x  =  NN  ->  (
( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  <-> 
( 1  e.  NN  /\ 
A. y  e.  NN  ( y  +  1 )  e.  NN ) ) )
116, 10sylbir 225 . . 3  |-  ( x  =  |^| { z  |  ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) }  ->  ( ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  <-> 
( 1  e.  NN  /\ 
A. y  e.  NN  ( y  +  1 )  e.  NN ) ) )
12 nnssre 11024 . . . . 5  |-  NN  C_  RR
135, 12eqsstr3i 3636 . . . 4  |-  |^| { z  |  ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) }  C_  RR
14 1nn 11031 . . . . 5  |-  1  e.  NN
15 peano2nn 11032 . . . . . 6  |-  ( y  e.  NN  ->  (
y  +  1 )  e.  NN )
1615rgen 2922 . . . . 5  |-  A. y  e.  NN  ( y  +  1 )  e.  NN
1714, 16pm3.2i 471 . . . 4  |-  ( 1  e.  NN  /\  A. y  e.  NN  (
y  +  1 )  e.  NN )
1813, 17pm3.2i 471 . . 3  |-  ( |^| { z  |  ( 1  e.  z  /\  A. y  e.  z  (
y  +  1 )  e.  z ) } 
C_  RR  /\  (
1  e.  NN  /\  A. y  e.  NN  (
y  +  1 )  e.  NN ) )
194, 11, 18intabs 4825 . 2  |-  |^| { x  |  ( x  C_  RR  /\  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) ) }  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
20 3anass 1042 . . . 4  |-  ( ( x  C_  RR  /\  1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  <->  ( x  C_  RR  /\  ( 1  e.  x  /\  A. y  e.  x  (
y  +  1 )  e.  x ) ) )
2120abbii 2739 . . 3  |-  { x  |  ( x  C_  RR  /\  1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  =  { x  |  ( x  C_  RR  /\  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) ) }
2221inteqi 4479 . 2  |-  |^| { x  |  ( x  C_  RR  /\  1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  =  |^| { x  |  ( x  C_  RR  /\  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) ) }
23 dfnn2 11033 . 2  |-  NN  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
2419, 22, 233eqtr4ri 2655 1  |-  NN  =  |^| { x  |  ( x  C_  RR  /\  1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912    C_ wss 3574   |^|cint 4475  (class class class)co 6650   RRcr 9935   1c1 9937    + caddc 9939   NNcn 11020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rrecex 10008  ax-cnre 10009
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-nn 11021
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator