MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invffval Structured version   Visualization version   Unicode version

Theorem invffval 16418
Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b  |-  B  =  ( Base `  C
)
invfval.n  |-  N  =  (Inv `  C )
invfval.c  |-  ( ph  ->  C  e.  Cat )
invfval.x  |-  ( ph  ->  X  e.  B )
invfval.y  |-  ( ph  ->  Y  e.  B )
invfval.s  |-  S  =  (Sect `  C )
Assertion
Ref Expression
invffval  |-  ( ph  ->  N  =  ( x  e.  B ,  y  e.  B  |->  ( ( x S y )  i^i  `' ( y S x ) ) ) )
Distinct variable groups:    x, y, B    ph, x, y    x, X, y    x, Y, y   
x, C, y    x, S, y
Allowed substitution hints:    N( x, y)

Proof of Theorem invffval
Dummy variable  c is distinct from all other variables.
StepHypRef Expression
1 invfval.n . 2  |-  N  =  (Inv `  C )
2 invfval.c . . 3  |-  ( ph  ->  C  e.  Cat )
3 fveq2 6191 . . . . . 6  |-  ( c  =  C  ->  ( Base `  c )  =  ( Base `  C
) )
4 invfval.b . . . . . 6  |-  B  =  ( Base `  C
)
53, 4syl6eqr 2674 . . . . 5  |-  ( c  =  C  ->  ( Base `  c )  =  B )
6 fveq2 6191 . . . . . . . 8  |-  ( c  =  C  ->  (Sect `  c )  =  (Sect `  C ) )
7 invfval.s . . . . . . . 8  |-  S  =  (Sect `  C )
86, 7syl6eqr 2674 . . . . . . 7  |-  ( c  =  C  ->  (Sect `  c )  =  S )
98oveqd 6667 . . . . . 6  |-  ( c  =  C  ->  (
x (Sect `  c
) y )  =  ( x S y ) )
108oveqd 6667 . . . . . . 7  |-  ( c  =  C  ->  (
y (Sect `  c
) x )  =  ( y S x ) )
1110cnveqd 5298 . . . . . 6  |-  ( c  =  C  ->  `' ( y (Sect `  c ) x )  =  `' ( y S x ) )
129, 11ineq12d 3815 . . . . 5  |-  ( c  =  C  ->  (
( x (Sect `  c ) y )  i^i  `' ( y (Sect `  c )
x ) )  =  ( ( x S y )  i^i  `' ( y S x ) ) )
135, 5, 12mpt2eq123dv 6717 . . . 4  |-  ( c  =  C  ->  (
x  e.  ( Base `  c ) ,  y  e.  ( Base `  c
)  |->  ( ( x (Sect `  c )
y )  i^i  `' ( y (Sect `  c ) x ) ) )  =  ( x  e.  B , 
y  e.  B  |->  ( ( x S y )  i^i  `' ( y S x ) ) ) )
14 df-inv 16408 . . . 4  |- Inv  =  ( c  e.  Cat  |->  ( x  e.  ( Base `  c ) ,  y  e.  ( Base `  c
)  |->  ( ( x (Sect `  c )
y )  i^i  `' ( y (Sect `  c ) x ) ) ) )
15 fvex 6201 . . . . . 6  |-  ( Base `  C )  e.  _V
164, 15eqeltri 2697 . . . . 5  |-  B  e. 
_V
1716, 16mpt2ex 7247 . . . 4  |-  ( x  e.  B ,  y  e.  B  |->  ( ( x S y )  i^i  `' ( y S x ) ) )  e.  _V
1813, 14, 17fvmpt 6282 . . 3  |-  ( C  e.  Cat  ->  (Inv `  C )  =  ( x  e.  B , 
y  e.  B  |->  ( ( x S y )  i^i  `' ( y S x ) ) ) )
192, 18syl 17 . 2  |-  ( ph  ->  (Inv `  C )  =  ( x  e.  B ,  y  e.  B  |->  ( ( x S y )  i^i  `' ( y S x ) ) ) )
201, 19syl5eq 2668 1  |-  ( ph  ->  N  =  ( x  e.  B ,  y  e.  B  |->  ( ( x S y )  i^i  `' ( y S x ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573   `'ccnv 5113   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Basecbs 15857   Catccat 16325  Sectcsect 16404  Invcinv 16405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-inv 16408
This theorem is referenced by:  invfval  16419  isoval  16425
  Copyright terms: Public domain W3C validator