MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmsss Structured version   Visualization version   Unicode version

Theorem cmsss 23147
Description: The restriction of a complete metric space is complete iff it is closed. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
cmsss.h  |-  K  =  ( Ms  A )
cmsss.x  |-  X  =  ( Base `  M
)
cmsss.j  |-  J  =  ( TopOpen `  M )
Assertion
Ref Expression
cmsss  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  ( K  e. CMetSp  <->  A  e.  ( Clsd `  J ) ) )

Proof of Theorem cmsss
StepHypRef Expression
1 simpr 477 . . . . . . 7  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  A  C_  X )
2 xpss12 5225 . . . . . . 7  |-  ( ( A  C_  X  /\  A  C_  X )  -> 
( A  X.  A
)  C_  ( X  X.  X ) )
31, 2sylancom 701 . . . . . 6  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  ( A  X.  A )  C_  ( X  X.  X
) )
43resabs1d 5428 . . . . 5  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  (
( ( dist `  M
)  |`  ( X  X.  X ) )  |`  ( A  X.  A
) )  =  ( ( dist `  M
)  |`  ( A  X.  A ) ) )
5 cmsss.x . . . . . . . . . 10  |-  X  =  ( Base `  M
)
6 fvex 6201 . . . . . . . . . 10  |-  ( Base `  M )  e.  _V
75, 6eqeltri 2697 . . . . . . . . 9  |-  X  e. 
_V
87ssex 4802 . . . . . . . 8  |-  ( A 
C_  X  ->  A  e.  _V )
98adantl 482 . . . . . . 7  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  A  e.  _V )
10 cmsss.h . . . . . . . 8  |-  K  =  ( Ms  A )
11 eqid 2622 . . . . . . . 8  |-  ( dist `  M )  =  (
dist `  M )
1210, 11ressds 16073 . . . . . . 7  |-  ( A  e.  _V  ->  ( dist `  M )  =  ( dist `  K
) )
139, 12syl 17 . . . . . 6  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  ( dist `  M )  =  ( dist `  K
) )
1410, 5ressbas2 15931 . . . . . . . 8  |-  ( A 
C_  X  ->  A  =  ( Base `  K
) )
1514adantl 482 . . . . . . 7  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  A  =  ( Base `  K
) )
1615sqxpeqd 5141 . . . . . 6  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  ( A  X.  A )  =  ( ( Base `  K
)  X.  ( Base `  K ) ) )
1713, 16reseq12d 5397 . . . . 5  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  (
( dist `  M )  |`  ( A  X.  A
) )  =  ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) ) )
184, 17eqtrd 2656 . . . 4  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  (
( ( dist `  M
)  |`  ( X  X.  X ) )  |`  ( A  X.  A
) )  =  ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) ) )
1915fveq2d 6195 . . . 4  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  ( CMet `  A )  =  ( CMet `  ( Base `  K ) ) )
2018, 19eleq12d 2695 . . 3  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  (
( ( ( dist `  M )  |`  ( X  X.  X ) )  |`  ( A  X.  A
) )  e.  (
CMet `  A )  <->  ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) )  e.  ( CMet `  ( Base `  K
) ) ) )
21 eqid 2622 . . . . . 6  |-  ( (
dist `  M )  |`  ( X  X.  X
) )  =  ( ( dist `  M
)  |`  ( X  X.  X ) )
225, 21cmscmet 23143 . . . . 5  |-  ( M  e. CMetSp  ->  ( ( dist `  M )  |`  ( X  X.  X ) )  e.  ( CMet `  X
) )
2322adantr 481 . . . 4  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  (
( dist `  M )  |`  ( X  X.  X
) )  e.  (
CMet `  X )
)
24 eqid 2622 . . . . 5  |-  ( MetOpen `  ( ( dist `  M
)  |`  ( X  X.  X ) ) )  =  ( MetOpen `  (
( dist `  M )  |`  ( X  X.  X
) ) )
2524cmetss 23113 . . . 4  |-  ( ( ( dist `  M
)  |`  ( X  X.  X ) )  e.  ( CMet `  X
)  ->  ( (
( ( dist `  M
)  |`  ( X  X.  X ) )  |`  ( A  X.  A
) )  e.  (
CMet `  A )  <->  A  e.  ( Clsd `  ( MetOpen
`  ( ( dist `  M )  |`  ( X  X.  X ) ) ) ) ) )
2623, 25syl 17 . . 3  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  (
( ( ( dist `  M )  |`  ( X  X.  X ) )  |`  ( A  X.  A
) )  e.  (
CMet `  A )  <->  A  e.  ( Clsd `  ( MetOpen
`  ( ( dist `  M )  |`  ( X  X.  X ) ) ) ) ) )
2720, 26bitr3d 270 . 2  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  (
( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) )  e.  ( CMet `  ( Base `  K
) )  <->  A  e.  ( Clsd `  ( MetOpen `  (
( dist `  M )  |`  ( X  X.  X
) ) ) ) ) )
28 cmsms 23145 . . . 4  |-  ( M  e. CMetSp  ->  M  e.  MetSp )
29 ressms 22331 . . . . 5  |-  ( ( M  e.  MetSp  /\  A  e.  _V )  ->  ( Ms  A )  e.  MetSp )
3010, 29syl5eqel 2705 . . . 4  |-  ( ( M  e.  MetSp  /\  A  e.  _V )  ->  K  e.  MetSp )
3128, 8, 30syl2an 494 . . 3  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  K  e.  MetSp )
32 eqid 2622 . . . . 5  |-  ( Base `  K )  =  (
Base `  K )
33 eqid 2622 . . . . 5  |-  ( (
dist `  K )  |`  ( ( Base `  K
)  X.  ( Base `  K ) ) )  =  ( ( dist `  K )  |`  (
( Base `  K )  X.  ( Base `  K
) ) )
3432, 33iscms 23142 . . . 4  |-  ( K  e. CMetSp 
<->  ( K  e.  MetSp  /\  ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) )  e.  ( CMet `  ( Base `  K
) ) ) )
3534baib 944 . . 3  |-  ( K  e.  MetSp  ->  ( K  e. CMetSp  <-> 
( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) )  e.  ( CMet `  ( Base `  K
) ) ) )
3631, 35syl 17 . 2  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  ( K  e. CMetSp  <->  ( ( dist `  K )  |`  (
( Base `  K )  X.  ( Base `  K
) ) )  e.  ( CMet `  ( Base `  K ) ) ) )
3728adantr 481 . . . . 5  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  M  e.  MetSp )
38 cmsss.j . . . . . 6  |-  J  =  ( TopOpen `  M )
3938, 5, 21mstopn 22257 . . . . 5  |-  ( M  e.  MetSp  ->  J  =  ( MetOpen `  ( ( dist `  M )  |`  ( X  X.  X
) ) ) )
4037, 39syl 17 . . . 4  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  J  =  ( MetOpen `  (
( dist `  M )  |`  ( X  X.  X
) ) ) )
4140fveq2d 6195 . . 3  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  ( Clsd `  J )  =  ( Clsd `  ( MetOpen
`  ( ( dist `  M )  |`  ( X  X.  X ) ) ) ) )
4241eleq2d 2687 . 2  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  ( A  e.  ( Clsd `  J )  <->  A  e.  ( Clsd `  ( MetOpen `  (
( dist `  M )  |`  ( X  X.  X
) ) ) ) ) )
4327, 36, 423bitr4d 300 1  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  ( K  e. CMetSp  <->  A  e.  ( Clsd `  J ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574    X. cxp 5112    |` cres 5116   ` cfv 5888  (class class class)co 6650   Basecbs 15857   ↾s cress 15858   distcds 15950   TopOpenctopn 16082   MetOpencmopn 19736   Clsdccld 20820   MetSpcmt 22123   CMetcms 23052  CMetSpccms 23129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-icc 12182  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-tset 15960  df-ds 15964  df-rest 16083  df-topn 16084  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-haus 21119  df-fil 21650  df-flim 21743  df-xms 22125  df-ms 22126  df-cfil 23053  df-cmet 23055  df-cms 23132
This theorem is referenced by:  lssbn  23148  resscdrg  23154  srabn  23156  ishl2  23166  recms  23168  pjthlem2  23209
  Copyright terms: Public domain W3C validator