MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isconngr1 Structured version   Visualization version   Unicode version

Theorem isconngr1 27050
Description: The property of being a connected graph. (Contributed by Alexander van der Vekens, 2-Dec-2017.) (Revised by AV, 15-Feb-2021.)
Hypothesis
Ref Expression
isconngr.v  |-  V  =  (Vtx `  G )
Assertion
Ref Expression
isconngr1  |-  ( G  e.  W  ->  ( G  e. ConnGraph  <->  A. k  e.  V  A. n  e.  ( V  \  { k } ) E. f E. p  f ( k (PathsOn `  G )
n ) p ) )
Distinct variable groups:    f, k, n, p, G    k, V, n
Allowed substitution hints:    V( f, p)    W( f, k, n, p)

Proof of Theorem isconngr1
Dummy variables  g  h  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfconngr1 27048 . . 3  |- ConnGraph  =  {
g  |  [. (Vtx `  g )  /  v ]. A. k  e.  v 
A. n  e.  ( v  \  { k } ) E. f E. p  f (
k (PathsOn `  g
) n ) p }
21eleq2i 2693 . 2  |-  ( G  e. ConnGraph 
<->  G  e.  { g  |  [. (Vtx `  g )  /  v ]. A. k  e.  v 
A. n  e.  ( v  \  { k } ) E. f E. p  f (
k (PathsOn `  g
) n ) p } )
3 fvex 6201 . . . . . 6  |-  (Vtx `  g )  e.  _V
4 id 22 . . . . . . 7  |-  ( v  =  (Vtx `  g
)  ->  v  =  (Vtx `  g ) )
5 difeq1 3721 . . . . . . . 8  |-  ( v  =  (Vtx `  g
)  ->  ( v  \  { k } )  =  ( (Vtx `  g )  \  {
k } ) )
65raleqdv 3144 . . . . . . 7  |-  ( v  =  (Vtx `  g
)  ->  ( A. n  e.  ( v  \  { k } ) E. f E. p  f ( k (PathsOn `  g ) n ) p  <->  A. n  e.  ( (Vtx `  g )  \  { k } ) E. f E. p  f ( k (PathsOn `  g ) n ) p ) )
74, 6raleqbidv 3152 . . . . . 6  |-  ( v  =  (Vtx `  g
)  ->  ( A. k  e.  v  A. n  e.  ( v  \  { k } ) E. f E. p  f ( k (PathsOn `  g ) n ) p  <->  A. k  e.  (Vtx
`  g ) A. n  e.  ( (Vtx `  g )  \  {
k } ) E. f E. p  f ( k (PathsOn `  g
) n ) p ) )
83, 7sbcie 3470 . . . . 5  |-  ( [. (Vtx `  g )  / 
v ]. A. k  e.  v  A. n  e.  ( v  \  {
k } ) E. f E. p  f ( k (PathsOn `  g
) n ) p  <->  A. k  e.  (Vtx `  g ) A. n  e.  ( (Vtx `  g
)  \  { k } ) E. f E. p  f (
k (PathsOn `  g
) n ) p )
98abbii 2739 . . . 4  |-  { g  |  [. (Vtx `  g )  /  v ]. A. k  e.  v 
A. n  e.  ( v  \  { k } ) E. f E. p  f (
k (PathsOn `  g
) n ) p }  =  { g  |  A. k  e.  (Vtx `  g ) A. n  e.  (
(Vtx `  g )  \  { k } ) E. f E. p  f ( k (PathsOn `  g ) n ) p }
109eleq2i 2693 . . 3  |-  ( G  e.  { g  | 
[. (Vtx `  g
)  /  v ]. A. k  e.  v  A. n  e.  (
v  \  { k } ) E. f E. p  f (
k (PathsOn `  g
) n ) p }  <->  G  e.  { g  |  A. k  e.  (Vtx `  g ) A. n  e.  (
(Vtx `  g )  \  { k } ) E. f E. p  f ( k (PathsOn `  g ) n ) p } )
11 fveq2 6191 . . . . . 6  |-  ( h  =  G  ->  (Vtx `  h )  =  (Vtx
`  G ) )
12 isconngr.v . . . . . 6  |-  V  =  (Vtx `  G )
1311, 12syl6eqr 2674 . . . . 5  |-  ( h  =  G  ->  (Vtx `  h )  =  V )
1413difeq1d 3727 . . . . . 6  |-  ( h  =  G  ->  (
(Vtx `  h )  \  { k } )  =  ( V  \  { k } ) )
15 fveq2 6191 . . . . . . . . 9  |-  ( h  =  G  ->  (PathsOn `  h )  =  (PathsOn `  G ) )
1615oveqd 6667 . . . . . . . 8  |-  ( h  =  G  ->  (
k (PathsOn `  h
) n )  =  ( k (PathsOn `  G
) n ) )
1716breqd 4664 . . . . . . 7  |-  ( h  =  G  ->  (
f ( k (PathsOn `  h ) n ) p  <->  f ( k (PathsOn `  G )
n ) p ) )
18172exbidv 1852 . . . . . 6  |-  ( h  =  G  ->  ( E. f E. p  f ( k (PathsOn `  h
) n ) p  <->  E. f E. p  f ( k (PathsOn `  G
) n ) p ) )
1914, 18raleqbidv 3152 . . . . 5  |-  ( h  =  G  ->  ( A. n  e.  (
(Vtx `  h )  \  { k } ) E. f E. p  f ( k (PathsOn `  h ) n ) p  <->  A. n  e.  ( V  \  { k } ) E. f E. p  f (
k (PathsOn `  G
) n ) p ) )
2013, 19raleqbidv 3152 . . . 4  |-  ( h  =  G  ->  ( A. k  e.  (Vtx `  h ) A. n  e.  ( (Vtx `  h
)  \  { k } ) E. f E. p  f (
k (PathsOn `  h
) n ) p  <->  A. k  e.  V  A. n  e.  ( V  \  { k } ) E. f E. p  f ( k (PathsOn `  G )
n ) p ) )
21 fveq2 6191 . . . . . 6  |-  ( g  =  h  ->  (Vtx `  g )  =  (Vtx
`  h ) )
2221difeq1d 3727 . . . . . . 7  |-  ( g  =  h  ->  (
(Vtx `  g )  \  { k } )  =  ( (Vtx `  h )  \  {
k } ) )
23 fveq2 6191 . . . . . . . . . 10  |-  ( g  =  h  ->  (PathsOn `  g )  =  (PathsOn `  h ) )
2423oveqd 6667 . . . . . . . . 9  |-  ( g  =  h  ->  (
k (PathsOn `  g
) n )  =  ( k (PathsOn `  h
) n ) )
2524breqd 4664 . . . . . . . 8  |-  ( g  =  h  ->  (
f ( k (PathsOn `  g ) n ) p  <->  f ( k (PathsOn `  h )
n ) p ) )
26252exbidv 1852 . . . . . . 7  |-  ( g  =  h  ->  ( E. f E. p  f ( k (PathsOn `  g
) n ) p  <->  E. f E. p  f ( k (PathsOn `  h
) n ) p ) )
2722, 26raleqbidv 3152 . . . . . 6  |-  ( g  =  h  ->  ( A. n  e.  (
(Vtx `  g )  \  { k } ) E. f E. p  f ( k (PathsOn `  g ) n ) p  <->  A. n  e.  ( (Vtx `  h )  \  { k } ) E. f E. p  f ( k (PathsOn `  h ) n ) p ) )
2821, 27raleqbidv 3152 . . . . 5  |-  ( g  =  h  ->  ( A. k  e.  (Vtx `  g ) A. n  e.  ( (Vtx `  g
)  \  { k } ) E. f E. p  f (
k (PathsOn `  g
) n ) p  <->  A. k  e.  (Vtx `  h ) A. n  e.  ( (Vtx `  h
)  \  { k } ) E. f E. p  f (
k (PathsOn `  h
) n ) p ) )
2928cbvabv 2747 . . . 4  |-  { g  |  A. k  e.  (Vtx `  g ) A. n  e.  (
(Vtx `  g )  \  { k } ) E. f E. p  f ( k (PathsOn `  g ) n ) p }  =  {
h  |  A. k  e.  (Vtx `  h ) A. n  e.  (
(Vtx `  h )  \  { k } ) E. f E. p  f ( k (PathsOn `  h ) n ) p }
3020, 29elab2g 3353 . . 3  |-  ( G  e.  W  ->  ( G  e.  { g  |  A. k  e.  (Vtx
`  g ) A. n  e.  ( (Vtx `  g )  \  {
k } ) E. f E. p  f ( k (PathsOn `  g
) n ) p }  <->  A. k  e.  V  A. n  e.  ( V  \  { k } ) E. f E. p  f ( k (PathsOn `  G )
n ) p ) )
3110, 30syl5bb 272 . 2  |-  ( G  e.  W  ->  ( G  e.  { g  |  [. (Vtx `  g
)  /  v ]. A. k  e.  v  A. n  e.  (
v  \  { k } ) E. f E. p  f (
k (PathsOn `  g
) n ) p }  <->  A. k  e.  V  A. n  e.  ( V  \  { k } ) E. f E. p  f ( k (PathsOn `  G )
n ) p ) )
322, 31syl5bb 272 1  |-  ( G  e.  W  ->  ( G  e. ConnGraph  <->  A. k  e.  V  A. n  e.  ( V  \  { k } ) E. f E. p  f ( k (PathsOn `  G )
n ) p ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   A.wral 2912   [.wsbc 3435    \ cdif 3571   {csn 4177   class class class wbr 4653   ` cfv 5888  (class class class)co 6650  Vtxcvtx 25874  PathsOncpthson 26610  ConnGraphcconngr 27046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-wlks 26495  df-wlkson 26496  df-trls 26589  df-trlson 26590  df-pths 26612  df-pthson 26614  df-conngr 27047
This theorem is referenced by:  cusconngr  27051  frgrconngr  27158
  Copyright terms: Public domain W3C validator