MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1conngr Structured version   Visualization version   Unicode version

Theorem 1conngr 27054
Description: A graph with (at most) one vertex is connected. (Contributed by Alexander van der Vekens, 2-Dec-2017.) (Revised by AV, 15-Feb-2021.)
Assertion
Ref Expression
1conngr  |-  ( ( G  e.  W  /\  (Vtx `  G )  =  { N } )  ->  G  e. ConnGraph )

Proof of Theorem 1conngr
Dummy variables  f 
k  n  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snidg 4206 . . . . . . . . . 10  |-  ( N  e.  _V  ->  N  e.  { N } )
21adantr 481 . . . . . . . . 9  |-  ( ( N  e.  _V  /\  ( G  e.  W  /\  (Vtx `  G )  =  { N } ) )  ->  N  e.  { N } )
3 eleq2 2690 . . . . . . . . . 10  |-  ( (Vtx
`  G )  =  { N }  ->  ( N  e.  (Vtx `  G )  <->  N  e.  { N } ) )
43ad2antll 765 . . . . . . . . 9  |-  ( ( N  e.  _V  /\  ( G  e.  W  /\  (Vtx `  G )  =  { N } ) )  ->  ( N  e.  (Vtx `  G )  <->  N  e.  { N }
) )
52, 4mpbird 247 . . . . . . . 8  |-  ( ( N  e.  _V  /\  ( G  e.  W  /\  (Vtx `  G )  =  { N } ) )  ->  N  e.  (Vtx `  G ) )
6 eqid 2622 . . . . . . . . 9  |-  (Vtx `  G )  =  (Vtx
`  G )
760pthonv 26990 . . . . . . . 8  |-  ( N  e.  (Vtx `  G
)  ->  E. f E. p  f ( N (PathsOn `  G ) N ) p )
85, 7syl 17 . . . . . . 7  |-  ( ( N  e.  _V  /\  ( G  e.  W  /\  (Vtx `  G )  =  { N } ) )  ->  E. f E. p  f ( N (PathsOn `  G ) N ) p )
9 oveq2 6658 . . . . . . . . . . 11  |-  ( n  =  N  ->  ( N (PathsOn `  G )
n )  =  ( N (PathsOn `  G
) N ) )
109breqd 4664 . . . . . . . . . 10  |-  ( n  =  N  ->  (
f ( N (PathsOn `  G ) n ) p  <->  f ( N (PathsOn `  G ) N ) p ) )
11102exbidv 1852 . . . . . . . . 9  |-  ( n  =  N  ->  ( E. f E. p  f ( N (PathsOn `  G
) n ) p  <->  E. f E. p  f ( N (PathsOn `  G
) N ) p ) )
1211ralsng 4218 . . . . . . . 8  |-  ( N  e.  _V  ->  ( A. n  e.  { N } E. f E. p  f ( N (PathsOn `  G ) n ) p  <->  E. f E. p  f ( N (PathsOn `  G ) N ) p ) )
1312adantr 481 . . . . . . 7  |-  ( ( N  e.  _V  /\  ( G  e.  W  /\  (Vtx `  G )  =  { N } ) )  ->  ( A. n  e.  { N } E. f E. p  f ( N (PathsOn `  G ) n ) p  <->  E. f E. p  f ( N (PathsOn `  G ) N ) p ) )
148, 13mpbird 247 . . . . . 6  |-  ( ( N  e.  _V  /\  ( G  e.  W  /\  (Vtx `  G )  =  { N } ) )  ->  A. n  e.  { N } E. f E. p  f ( N (PathsOn `  G
) n ) p )
15 oveq1 6657 . . . . . . . . . . 11  |-  ( k  =  N  ->  (
k (PathsOn `  G
) n )  =  ( N (PathsOn `  G
) n ) )
1615breqd 4664 . . . . . . . . . 10  |-  ( k  =  N  ->  (
f ( k (PathsOn `  G ) n ) p  <->  f ( N (PathsOn `  G )
n ) p ) )
17162exbidv 1852 . . . . . . . . 9  |-  ( k  =  N  ->  ( E. f E. p  f ( k (PathsOn `  G
) n ) p  <->  E. f E. p  f ( N (PathsOn `  G
) n ) p ) )
1817ralbidv 2986 . . . . . . . 8  |-  ( k  =  N  ->  ( A. n  e.  { N } E. f E. p  f ( k (PathsOn `  G ) n ) p  <->  A. n  e.  { N } E. f E. p  f ( N (PathsOn `  G )
n ) p ) )
1918ralsng 4218 . . . . . . 7  |-  ( N  e.  _V  ->  ( A. k  e.  { N } A. n  e.  { N } E. f E. p  f ( k (PathsOn `  G )
n ) p  <->  A. n  e.  { N } E. f E. p  f ( N (PathsOn `  G
) n ) p ) )
2019adantr 481 . . . . . 6  |-  ( ( N  e.  _V  /\  ( G  e.  W  /\  (Vtx `  G )  =  { N } ) )  ->  ( A. k  e.  { N } A. n  e.  { N } E. f E. p  f ( k (PathsOn `  G )
n ) p  <->  A. n  e.  { N } E. f E. p  f ( N (PathsOn `  G
) n ) p ) )
2114, 20mpbird 247 . . . . 5  |-  ( ( N  e.  _V  /\  ( G  e.  W  /\  (Vtx `  G )  =  { N } ) )  ->  A. k  e.  { N } A. n  e.  { N } E. f E. p  f ( k (PathsOn `  G ) n ) p )
22 id 22 . . . . . . 7  |-  ( (Vtx
`  G )  =  { N }  ->  (Vtx
`  G )  =  { N } )
23 raleq 3138 . . . . . . 7  |-  ( (Vtx
`  G )  =  { N }  ->  ( A. n  e.  (Vtx
`  G ) E. f E. p  f ( k (PathsOn `  G
) n ) p  <->  A. n  e.  { N } E. f E. p  f ( k (PathsOn `  G ) n ) p ) )
2422, 23raleqbidv 3152 . . . . . 6  |-  ( (Vtx
`  G )  =  { N }  ->  ( A. k  e.  (Vtx
`  G ) A. n  e.  (Vtx `  G
) E. f E. p  f ( k (PathsOn `  G )
n ) p  <->  A. k  e.  { N } A. n  e.  { N } E. f E. p  f ( k (PathsOn `  G ) n ) p ) )
2524ad2antll 765 . . . . 5  |-  ( ( N  e.  _V  /\  ( G  e.  W  /\  (Vtx `  G )  =  { N } ) )  ->  ( A. k  e.  (Vtx `  G
) A. n  e.  (Vtx `  G ) E. f E. p  f ( k (PathsOn `  G
) n ) p  <->  A. k  e.  { N } A. n  e.  { N } E. f E. p  f ( k (PathsOn `  G )
n ) p ) )
2621, 25mpbird 247 . . . 4  |-  ( ( N  e.  _V  /\  ( G  e.  W  /\  (Vtx `  G )  =  { N } ) )  ->  A. k  e.  (Vtx `  G ) A. n  e.  (Vtx `  G ) E. f E. p  f (
k (PathsOn `  G
) n ) p )
276isconngr 27049 . . . . 5  |-  ( G  e.  W  ->  ( G  e. ConnGraph  <->  A. k  e.  (Vtx
`  G ) A. n  e.  (Vtx `  G
) E. f E. p  f ( k (PathsOn `  G )
n ) p ) )
2827ad2antrl 764 . . . 4  |-  ( ( N  e.  _V  /\  ( G  e.  W  /\  (Vtx `  G )  =  { N } ) )  ->  ( G  e. ConnGraph  <->  A. k  e.  (Vtx `  G ) A. n  e.  (Vtx `  G ) E. f E. p  f ( k (PathsOn `  G
) n ) p ) )
2926, 28mpbird 247 . . 3  |-  ( ( N  e.  _V  /\  ( G  e.  W  /\  (Vtx `  G )  =  { N } ) )  ->  G  e. ConnGraph )
3029ex 450 . 2  |-  ( N  e.  _V  ->  (
( G  e.  W  /\  (Vtx `  G )  =  { N } )  ->  G  e. ConnGraph ) )
31 snprc 4253 . . 3  |-  ( -.  N  e.  _V  <->  { N }  =  (/) )
32 eqeq2 2633 . . . . 5  |-  ( { N }  =  (/)  ->  ( (Vtx `  G
)  =  { N } 
<->  (Vtx `  G )  =  (/) ) )
3332anbi2d 740 . . . 4  |-  ( { N }  =  (/)  ->  ( ( G  e.  W  /\  (Vtx `  G )  =  { N } )  <->  ( G  e.  W  /\  (Vtx `  G )  =  (/) ) ) )
34 0vconngr 27053 . . . 4  |-  ( ( G  e.  W  /\  (Vtx `  G )  =  (/) )  ->  G  e. ConnGraph )
3533, 34syl6bi 243 . . 3  |-  ( { N }  =  (/)  ->  ( ( G  e.  W  /\  (Vtx `  G )  =  { N } )  ->  G  e. ConnGraph ) )
3631, 35sylbi 207 . 2  |-  ( -.  N  e.  _V  ->  ( ( G  e.  W  /\  (Vtx `  G )  =  { N } )  ->  G  e. ConnGraph ) )
3730, 36pm2.61i 176 1  |-  ( ( G  e.  W  /\  (Vtx `  G )  =  { N } )  ->  G  e. ConnGraph )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   _Vcvv 3200   (/)c0 3915   {csn 4177   class class class wbr 4653   ` cfv 5888  (class class class)co 6650  Vtxcvtx 25874  PathsOncpthson 26610  ConnGraphcconngr 27046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-wlks 26495  df-wlkson 26496  df-trls 26589  df-trlson 26590  df-pths 26612  df-pthson 26614  df-conngr 27047
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator