MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdomn Structured version   Visualization version   Unicode version

Theorem isdomn 19294
Description: Expand definition of a domain. (Contributed by Mario Carneiro, 28-Mar-2015.)
Hypotheses
Ref Expression
isdomn.b  |-  B  =  ( Base `  R
)
isdomn.t  |-  .x.  =  ( .r `  R )
isdomn.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
isdomn  |-  ( R  e. Domn 
<->  ( R  e. NzRing  /\  A. x  e.  B  A. y  e.  B  (
( x  .x.  y
)  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
) ) )
Distinct variable groups:    x, B, y    x, R, y    x,  .0. , y
Allowed substitution hints:    .x. ( x, y)

Proof of Theorem isdomn
Dummy variables  b 
r  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6203 . . 3  |-  ( r  =  R  ->  ( Base `  r )  e. 
_V )
2 fveq2 6191 . . . 4  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
3 isdomn.b . . . 4  |-  B  =  ( Base `  R
)
42, 3syl6eqr 2674 . . 3  |-  ( r  =  R  ->  ( Base `  r )  =  B )
5 fvexd 6203 . . . 4  |-  ( ( r  =  R  /\  b  =  B )  ->  ( 0g `  r
)  e.  _V )
6 fveq2 6191 . . . . . 6  |-  ( r  =  R  ->  ( 0g `  r )  =  ( 0g `  R
) )
76adantr 481 . . . . 5  |-  ( ( r  =  R  /\  b  =  B )  ->  ( 0g `  r
)  =  ( 0g
`  R ) )
8 isdomn.z . . . . 5  |-  .0.  =  ( 0g `  R )
97, 8syl6eqr 2674 . . . 4  |-  ( ( r  =  R  /\  b  =  B )  ->  ( 0g `  r
)  =  .0.  )
10 simplr 792 . . . . 5  |-  ( ( ( r  =  R  /\  b  =  B )  /\  z  =  .0.  )  ->  b  =  B )
11 fveq2 6191 . . . . . . . . . 10  |-  ( r  =  R  ->  ( .r `  r )  =  ( .r `  R
) )
12 isdomn.t . . . . . . . . . 10  |-  .x.  =  ( .r `  R )
1311, 12syl6eqr 2674 . . . . . . . . 9  |-  ( r  =  R  ->  ( .r `  r )  = 
.x.  )
1413oveqdr 6674 . . . . . . . 8  |-  ( ( r  =  R  /\  b  =  B )  ->  ( x ( .r
`  r ) y )  =  ( x 
.x.  y ) )
15 id 22 . . . . . . . 8  |-  ( z  =  .0.  ->  z  =  .0.  )
1614, 15eqeqan12d 2638 . . . . . . 7  |-  ( ( ( r  =  R  /\  b  =  B )  /\  z  =  .0.  )  ->  (
( x ( .r
`  r ) y )  =  z  <->  ( x  .x.  y )  =  .0.  ) )
17 eqeq2 2633 . . . . . . . . 9  |-  ( z  =  .0.  ->  (
x  =  z  <->  x  =  .0.  ) )
18 eqeq2 2633 . . . . . . . . 9  |-  ( z  =  .0.  ->  (
y  =  z  <->  y  =  .0.  ) )
1917, 18orbi12d 746 . . . . . . . 8  |-  ( z  =  .0.  ->  (
( x  =  z  \/  y  =  z )  <->  ( x  =  .0.  \/  y  =  .0.  ) ) )
2019adantl 482 . . . . . . 7  |-  ( ( ( r  =  R  /\  b  =  B )  /\  z  =  .0.  )  ->  (
( x  =  z  \/  y  =  z )  <->  ( x  =  .0.  \/  y  =  .0.  ) ) )
2116, 20imbi12d 334 . . . . . 6  |-  ( ( ( r  =  R  /\  b  =  B )  /\  z  =  .0.  )  ->  (
( ( x ( .r `  r ) y )  =  z  ->  ( x  =  z  \/  y  =  z ) )  <->  ( (
x  .x.  y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  ) ) ) )
2210, 21raleqbidv 3152 . . . . 5  |-  ( ( ( r  =  R  /\  b  =  B )  /\  z  =  .0.  )  ->  ( A. y  e.  b 
( ( x ( .r `  r ) y )  =  z  ->  ( x  =  z  \/  y  =  z ) )  <->  A. y  e.  B  ( (
x  .x.  y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  ) ) ) )
2310, 22raleqbidv 3152 . . . 4  |-  ( ( ( r  =  R  /\  b  =  B )  /\  z  =  .0.  )  ->  ( A. x  e.  b  A. y  e.  b 
( ( x ( .r `  r ) y )  =  z  ->  ( x  =  z  \/  y  =  z ) )  <->  A. x  e.  B  A. y  e.  B  ( (
x  .x.  y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  ) ) ) )
245, 9, 23sbcied2 3473 . . 3  |-  ( ( r  =  R  /\  b  =  B )  ->  ( [. ( 0g
`  r )  / 
z ]. A. x  e.  b  A. y  e.  b  ( ( x ( .r `  r
) y )  =  z  ->  ( x  =  z  \/  y  =  z ) )  <->  A. x  e.  B  A. y  e.  B  ( ( x  .x.  y )  =  .0. 
->  ( x  =  .0. 
\/  y  =  .0.  ) ) ) )
251, 4, 24sbcied2 3473 . 2  |-  ( r  =  R  ->  ( [. ( Base `  r
)  /  b ]. [. ( 0g `  r
)  /  z ]. A. x  e.  b  A. y  e.  b 
( ( x ( .r `  r ) y )  =  z  ->  ( x  =  z  \/  y  =  z ) )  <->  A. x  e.  B  A. y  e.  B  ( (
x  .x.  y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  ) ) ) )
26 df-domn 19284 . 2  |- Domn  =  {
r  e. NzRing  |  [. ( Base `  r )  / 
b ]. [. ( 0g
`  r )  / 
z ]. A. x  e.  b  A. y  e.  b  ( ( x ( .r `  r
) y )  =  z  ->  ( x  =  z  \/  y  =  z ) ) }
2725, 26elrab2 3366 1  |-  ( R  e. Domn 
<->  ( R  e. NzRing  /\  A. x  e.  B  A. y  e.  B  (
( x  .x.  y
)  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   [.wsbc 3435   ` cfv 5888  (class class class)co 6650   Basecbs 15857   .rcmulr 15942   0gc0g 16100  NzRingcnzr 19257  Domncdomn 19280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-domn 19284
This theorem is referenced by:  domnnzr  19295  domneq0  19297  isdomn2  19299  opprdomn  19301  abvn0b  19302  znfld  19909  ply1domn  23883  fta1b  23929  isdomn3  37782
  Copyright terms: Public domain W3C validator