MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znfld Structured version   Visualization version   Unicode version

Theorem znfld 19909
Description: The ℤ/nℤ structure is a finite field when  n is prime. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypothesis
Ref Expression
zntos.y  |-  Y  =  (ℤ/n `  N )
Assertion
Ref Expression
znfld  |-  ( N  e.  Prime  ->  Y  e. Field
)

Proof of Theorem znfld
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmnn 15388 . . . . 5  |-  ( N  e.  Prime  ->  N  e.  NN )
2 nnnn0 11299 . . . . 5  |-  ( N  e.  NN  ->  N  e.  NN0 )
31, 2syl 17 . . . 4  |-  ( N  e.  Prime  ->  N  e. 
NN0 )
4 zntos.y . . . . 5  |-  Y  =  (ℤ/n `  N )
54zncrng 19893 . . . 4  |-  ( N  e.  NN0  ->  Y  e. 
CRing )
63, 5syl 17 . . 3  |-  ( N  e.  Prime  ->  Y  e. 
CRing )
7 crngring 18558 . . . . . 6  |-  ( Y  e.  CRing  ->  Y  e.  Ring )
81, 2, 5, 74syl 19 . . . . 5  |-  ( N  e.  Prime  ->  Y  e. 
Ring )
9 hash2 13193 . . . . . . 7  |-  ( # `  2o )  =  2
10 prmuz2 15408 . . . . . . . . 9  |-  ( N  e.  Prime  ->  N  e.  ( ZZ>= `  2 )
)
11 eluzle 11700 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  2
)  ->  2  <_  N )
1210, 11syl 17 . . . . . . . 8  |-  ( N  e.  Prime  ->  2  <_  N )
13 eqid 2622 . . . . . . . . . 10  |-  ( Base `  Y )  =  (
Base `  Y )
144, 13znhash 19907 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( # `
 ( Base `  Y
) )  =  N )
151, 14syl 17 . . . . . . . 8  |-  ( N  e.  Prime  ->  ( # `  ( Base `  Y
) )  =  N )
1612, 15breqtrrd 4681 . . . . . . 7  |-  ( N  e.  Prime  ->  2  <_ 
( # `  ( Base `  Y ) ) )
179, 16syl5eqbr 4688 . . . . . 6  |-  ( N  e.  Prime  ->  ( # `  2o )  <_  ( # `
 ( Base `  Y
) ) )
18 2onn 7720 . . . . . . . 8  |-  2o  e.  om
19 nnfi 8153 . . . . . . . 8  |-  ( 2o  e.  om  ->  2o  e.  Fin )
2018, 19ax-mp 5 . . . . . . 7  |-  2o  e.  Fin
21 fvex 6201 . . . . . . 7  |-  ( Base `  Y )  e.  _V
22 hashdom 13168 . . . . . . 7  |-  ( ( 2o  e.  Fin  /\  ( Base `  Y )  e.  _V )  ->  (
( # `  2o )  <_  ( # `  ( Base `  Y ) )  <-> 
2o  ~<_  ( Base `  Y
) ) )
2320, 21, 22mp2an 708 . . . . . 6  |-  ( (
# `  2o )  <_  ( # `  ( Base `  Y ) )  <-> 
2o  ~<_  ( Base `  Y
) )
2417, 23sylib 208 . . . . 5  |-  ( N  e.  Prime  ->  2o  ~<_  ( Base `  Y ) )
2513isnzr2 19263 . . . . 5  |-  ( Y  e. NzRing 
<->  ( Y  e.  Ring  /\  2o  ~<_  ( Base `  Y
) ) )
268, 24, 25sylanbrc 698 . . . 4  |-  ( N  e.  Prime  ->  Y  e. NzRing
)
27 eqid 2622 . . . . . . . . 9  |-  ( ZRHom `  Y )  =  ( ZRHom `  Y )
284, 13, 27znzrhfo 19896 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ZRHom `  Y ) : ZZ -onto->
( Base `  Y )
)
293, 28syl 17 . . . . . . 7  |-  ( N  e.  Prime  ->  ( ZRHom `  Y ) : ZZ -onto->
( Base `  Y )
)
30 foelrn 6378 . . . . . . . 8  |-  ( ( ( ZRHom `  Y
) : ZZ -onto-> ( Base `  Y )  /\  x  e.  ( Base `  Y ) )  ->  E. z  e.  ZZ  x  =  ( ( ZRHom `  Y ) `  z ) )
31 foelrn 6378 . . . . . . . 8  |-  ( ( ( ZRHom `  Y
) : ZZ -onto-> ( Base `  Y )  /\  y  e.  ( Base `  Y ) )  ->  E. w  e.  ZZ  y  =  ( ( ZRHom `  Y ) `  w ) )
3230, 31anim12dan 882 . . . . . . 7  |-  ( ( ( ZRHom `  Y
) : ZZ -onto-> ( Base `  Y )  /\  ( x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y ) ) )  ->  ( E. z  e.  ZZ  x  =  ( ( ZRHom `  Y
) `  z )  /\  E. w  e.  ZZ  y  =  ( ( ZRHom `  Y ) `  w ) ) )
3329, 32sylan 488 . . . . . 6  |-  ( ( N  e.  Prime  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
) ) )  -> 
( E. z  e.  ZZ  x  =  ( ( ZRHom `  Y
) `  z )  /\  E. w  e.  ZZ  y  =  ( ( ZRHom `  Y ) `  w ) ) )
34 reeanv 3107 . . . . . . . 8  |-  ( E. z  e.  ZZ  E. w  e.  ZZ  (
x  =  ( ( ZRHom `  Y ) `  z )  /\  y  =  ( ( ZRHom `  Y ) `  w
) )  <->  ( E. z  e.  ZZ  x  =  ( ( ZRHom `  Y ) `  z
)  /\  E. w  e.  ZZ  y  =  ( ( ZRHom `  Y
) `  w )
) )
35 euclemma 15425 . . . . . . . . . . . . 13  |-  ( ( N  e.  Prime  /\  z  e.  ZZ  /\  w  e.  ZZ )  ->  ( N  ||  ( z  x.  w )  <->  ( N  ||  z  \/  N  ||  w ) ) )
36353expb 1266 . . . . . . . . . . . 12  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( N  ||  ( z  x.  w
)  <->  ( N  ||  z  \/  N  ||  w
) ) )
378adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  Y  e.  Ring )
3827zrhrhm 19860 . . . . . . . . . . . . . . . 16  |-  ( Y  e.  Ring  ->  ( ZRHom `  Y )  e.  (ring RingHom  Y
) )
3937, 38syl 17 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( ZRHom `  Y )  e.  (ring RingHom  Y
) )
40 simprl 794 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  z  e.  ZZ )
41 simprr 796 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  w  e.  ZZ )
42 zringbas 19824 . . . . . . . . . . . . . . . 16  |-  ZZ  =  ( Base ` ring )
43 zringmulr 19827 . . . . . . . . . . . . . . . 16  |-  x.  =  ( .r ` ring )
44 eqid 2622 . . . . . . . . . . . . . . . 16  |-  ( .r
`  Y )  =  ( .r `  Y
)
4542, 43, 44rhmmul 18727 . . . . . . . . . . . . . . 15  |-  ( ( ( ZRHom `  Y
)  e.  (ring RingHom  Y )  /\  z  e.  ZZ  /\  w  e.  ZZ )  ->  (
( ZRHom `  Y
) `  ( z  x.  w ) )  =  ( ( ( ZRHom `  Y ) `  z
) ( .r `  Y ) ( ( ZRHom `  Y ) `  w ) ) )
4639, 40, 41, 45syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( ( ZRHom `  Y ) `  ( z  x.  w
) )  =  ( ( ( ZRHom `  Y ) `  z
) ( .r `  Y ) ( ( ZRHom `  Y ) `  w ) ) )
4746eqeq1d 2624 . . . . . . . . . . . . 13  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
( ZRHom `  Y
) `  ( z  x.  w ) )  =  ( 0g `  Y
)  <->  ( ( ( ZRHom `  Y ) `  z ) ( .r
`  Y ) ( ( ZRHom `  Y
) `  w )
)  =  ( 0g
`  Y ) ) )
48 zmulcl 11426 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ZZ  /\  w  e.  ZZ )  ->  ( z  x.  w
)  e.  ZZ )
49 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( 0g
`  Y )  =  ( 0g `  Y
)
504, 27, 49zndvds0 19899 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  ( z  x.  w
)  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  ( z  x.  w
) )  =  ( 0g `  Y )  <-> 
N  ||  ( z  x.  w ) ) )
513, 48, 50syl2an 494 . . . . . . . . . . . . 13  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
( ZRHom `  Y
) `  ( z  x.  w ) )  =  ( 0g `  Y
)  <->  N  ||  ( z  x.  w ) ) )
5247, 51bitr3d 270 . . . . . . . . . . . 12  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
( ( ZRHom `  Y ) `  z
) ( .r `  Y ) ( ( ZRHom `  Y ) `  w ) )  =  ( 0g `  Y
)  <->  N  ||  ( z  x.  w ) ) )
533adantr 481 . . . . . . . . . . . . . 14  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  N  e.  NN0 )
544, 27, 49zndvds0 19899 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  z  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  z
)  =  ( 0g
`  Y )  <->  N  ||  z
) )
5553, 40, 54syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
( ZRHom `  Y
) `  z )  =  ( 0g `  Y )  <->  N  ||  z
) )
564, 27, 49zndvds0 19899 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  w  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  w
)  =  ( 0g
`  Y )  <->  N  ||  w
) )
5753, 41, 56syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
( ZRHom `  Y
) `  w )  =  ( 0g `  Y )  <->  N  ||  w
) )
5855, 57orbi12d 746 . . . . . . . . . . . 12  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
( ( ZRHom `  Y ) `  z
)  =  ( 0g
`  Y )  \/  ( ( ZRHom `  Y ) `  w
)  =  ( 0g
`  Y ) )  <-> 
( N  ||  z  \/  N  ||  w ) ) )
5936, 52, 583bitr4d 300 . . . . . . . . . . 11  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
( ( ZRHom `  Y ) `  z
) ( .r `  Y ) ( ( ZRHom `  Y ) `  w ) )  =  ( 0g `  Y
)  <->  ( ( ( ZRHom `  Y ) `  z )  =  ( 0g `  Y )  \/  ( ( ZRHom `  Y ) `  w
)  =  ( 0g
`  Y ) ) ) )
6059biimpd 219 . . . . . . . . . 10  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
( ( ZRHom `  Y ) `  z
) ( .r `  Y ) ( ( ZRHom `  Y ) `  w ) )  =  ( 0g `  Y
)  ->  ( (
( ZRHom `  Y
) `  z )  =  ( 0g `  Y )  \/  (
( ZRHom `  Y
) `  w )  =  ( 0g `  Y ) ) ) )
61 oveq12 6659 . . . . . . . . . . . 12  |-  ( ( x  =  ( ( ZRHom `  Y ) `  z )  /\  y  =  ( ( ZRHom `  Y ) `  w
) )  ->  (
x ( .r `  Y ) y )  =  ( ( ( ZRHom `  Y ) `  z ) ( .r
`  Y ) ( ( ZRHom `  Y
) `  w )
) )
6261eqeq1d 2624 . . . . . . . . . . 11  |-  ( ( x  =  ( ( ZRHom `  Y ) `  z )  /\  y  =  ( ( ZRHom `  Y ) `  w
) )  ->  (
( x ( .r
`  Y ) y )  =  ( 0g
`  Y )  <->  ( (
( ZRHom `  Y
) `  z )
( .r `  Y
) ( ( ZRHom `  Y ) `  w
) )  =  ( 0g `  Y ) ) )
63 eqeq1 2626 . . . . . . . . . . . . 13  |-  ( x  =  ( ( ZRHom `  Y ) `  z
)  ->  ( x  =  ( 0g `  Y )  <->  ( ( ZRHom `  Y ) `  z )  =  ( 0g `  Y ) ) )
6463orbi1d 739 . . . . . . . . . . . 12  |-  ( x  =  ( ( ZRHom `  Y ) `  z
)  ->  ( (
x  =  ( 0g
`  Y )  \/  y  =  ( 0g
`  Y ) )  <-> 
( ( ( ZRHom `  Y ) `  z
)  =  ( 0g
`  Y )  \/  y  =  ( 0g
`  Y ) ) ) )
65 eqeq1 2626 . . . . . . . . . . . . 13  |-  ( y  =  ( ( ZRHom `  Y ) `  w
)  ->  ( y  =  ( 0g `  Y )  <->  ( ( ZRHom `  Y ) `  w )  =  ( 0g `  Y ) ) )
6665orbi2d 738 . . . . . . . . . . . 12  |-  ( y  =  ( ( ZRHom `  Y ) `  w
)  ->  ( (
( ( ZRHom `  Y ) `  z
)  =  ( 0g
`  Y )  \/  y  =  ( 0g
`  Y ) )  <-> 
( ( ( ZRHom `  Y ) `  z
)  =  ( 0g
`  Y )  \/  ( ( ZRHom `  Y ) `  w
)  =  ( 0g
`  Y ) ) ) )
6764, 66sylan9bb 736 . . . . . . . . . . 11  |-  ( ( x  =  ( ( ZRHom `  Y ) `  z )  /\  y  =  ( ( ZRHom `  Y ) `  w
) )  ->  (
( x  =  ( 0g `  Y )  \/  y  =  ( 0g `  Y ) )  <->  ( ( ( ZRHom `  Y ) `  z )  =  ( 0g `  Y )  \/  ( ( ZRHom `  Y ) `  w
)  =  ( 0g
`  Y ) ) ) )
6862, 67imbi12d 334 . . . . . . . . . 10  |-  ( ( x  =  ( ( ZRHom `  Y ) `  z )  /\  y  =  ( ( ZRHom `  Y ) `  w
) )  ->  (
( ( x ( .r `  Y ) y )  =  ( 0g `  Y )  ->  ( x  =  ( 0g `  Y
)  \/  y  =  ( 0g `  Y
) ) )  <->  ( (
( ( ZRHom `  Y ) `  z
) ( .r `  Y ) ( ( ZRHom `  Y ) `  w ) )  =  ( 0g `  Y
)  ->  ( (
( ZRHom `  Y
) `  z )  =  ( 0g `  Y )  \/  (
( ZRHom `  Y
) `  w )  =  ( 0g `  Y ) ) ) ) )
6960, 68syl5ibrcom 237 . . . . . . . . 9  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
x  =  ( ( ZRHom `  Y ) `  z )  /\  y  =  ( ( ZRHom `  Y ) `  w
) )  ->  (
( x ( .r
`  Y ) y )  =  ( 0g
`  Y )  -> 
( x  =  ( 0g `  Y )  \/  y  =  ( 0g `  Y ) ) ) ) )
7069rexlimdvva 3038 . . . . . . . 8  |-  ( N  e.  Prime  ->  ( E. z  e.  ZZ  E. w  e.  ZZ  (
x  =  ( ( ZRHom `  Y ) `  z )  /\  y  =  ( ( ZRHom `  Y ) `  w
) )  ->  (
( x ( .r
`  Y ) y )  =  ( 0g
`  Y )  -> 
( x  =  ( 0g `  Y )  \/  y  =  ( 0g `  Y ) ) ) ) )
7134, 70syl5bir 233 . . . . . . 7  |-  ( N  e.  Prime  ->  ( ( E. z  e.  ZZ  x  =  ( ( ZRHom `  Y ) `  z )  /\  E. w  e.  ZZ  y  =  ( ( ZRHom `  Y ) `  w
) )  ->  (
( x ( .r
`  Y ) y )  =  ( 0g
`  Y )  -> 
( x  =  ( 0g `  Y )  \/  y  =  ( 0g `  Y ) ) ) ) )
7271imp 445 . . . . . 6  |-  ( ( N  e.  Prime  /\  ( E. z  e.  ZZ  x  =  ( ( ZRHom `  Y ) `  z )  /\  E. w  e.  ZZ  y  =  ( ( ZRHom `  Y ) `  w
) ) )  -> 
( ( x ( .r `  Y ) y )  =  ( 0g `  Y )  ->  ( x  =  ( 0g `  Y
)  \/  y  =  ( 0g `  Y
) ) ) )
7333, 72syldan 487 . . . . 5  |-  ( ( N  e.  Prime  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
) ) )  -> 
( ( x ( .r `  Y ) y )  =  ( 0g `  Y )  ->  ( x  =  ( 0g `  Y
)  \/  y  =  ( 0g `  Y
) ) ) )
7473ralrimivva 2971 . . . 4  |-  ( N  e.  Prime  ->  A. x  e.  ( Base `  Y
) A. y  e.  ( Base `  Y
) ( ( x ( .r `  Y
) y )  =  ( 0g `  Y
)  ->  ( x  =  ( 0g `  Y )  \/  y  =  ( 0g `  Y ) ) ) )
7513, 44, 49isdomn 19294 . . . 4  |-  ( Y  e. Domn 
<->  ( Y  e. NzRing  /\  A. x  e.  ( Base `  Y ) A. y  e.  ( Base `  Y
) ( ( x ( .r `  Y
) y )  =  ( 0g `  Y
)  ->  ( x  =  ( 0g `  Y )  \/  y  =  ( 0g `  Y ) ) ) ) )
7626, 74, 75sylanbrc 698 . . 3  |-  ( N  e.  Prime  ->  Y  e. Domn
)
77 isidom 19304 . . 3  |-  ( Y  e. IDomn 
<->  ( Y  e.  CRing  /\  Y  e. Domn ) )
786, 76, 77sylanbrc 698 . 2  |-  ( N  e.  Prime  ->  Y  e. IDomn
)
794, 13znfi 19908 . . . 4  |-  ( N  e.  NN  ->  ( Base `  Y )  e. 
Fin )
801, 79syl 17 . . 3  |-  ( N  e.  Prime  ->  ( Base `  Y )  e.  Fin )
8113fiidomfld 19308 . . 3  |-  ( (
Base `  Y )  e.  Fin  ->  ( Y  e. IDomn  <-> 
Y  e. Field ) )
8280, 81syl 17 . 2  |-  ( N  e.  Prime  ->  ( Y  e. IDomn 
<->  Y  e. Field ) )
8378, 82mpbid 222 1  |-  ( N  e.  Prime  ->  Y  e. Field
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200   class class class wbr 4653   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650   omcom 7065   2oc2o 7554    ~<_ cdom 7953   Fincfn 7955    x. cmul 9941    <_ cle 10075   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   #chash 13117    || cdvds 14983   Primecprime 15385   Basecbs 15857   .rcmulr 15942   0gc0g 16100   Ringcrg 18547   CRingccrg 18548   RingHom crh 18712  Fieldcfield 18748  NzRingcnzr 19257  Domncdomn 19280  IDomncidom 19281  ℤringzring 19818   ZRHomczrh 19848  ℤ/nczn 19851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-imas 16168  df-qus 16169  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-nsg 17592  df-eqg 17593  df-ghm 17658  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-rnghom 18715  df-drng 18749  df-field 18750  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-sra 19172  df-rgmod 19173  df-lidl 19174  df-rsp 19175  df-2idl 19232  df-nzr 19258  df-rlreg 19283  df-domn 19284  df-idom 19285  df-cnfld 19747  df-zring 19819  df-zrh 19852  df-zn 19855
This theorem is referenced by:  znidomb  19910  lgsqrlem1  25071  lgsqrlem2  25072  lgsqrlem3  25073  lgsqrlem4  25074  lgseisenlem3  25102  lgseisenlem4  25103
  Copyright terms: Public domain W3C validator