MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdomn2 Structured version   Visualization version   Unicode version

Theorem isdomn2 19299
Description: A ring is a domain iff all nonzero elements are nonzero-divisors. (Contributed by Mario Carneiro, 28-Mar-2015.)
Hypotheses
Ref Expression
isdomn2.b  |-  B  =  ( Base `  R
)
isdomn2.t  |-  E  =  (RLReg `  R )
isdomn2.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
isdomn2  |-  ( R  e. Domn 
<->  ( R  e. NzRing  /\  ( B  \  {  .0.  }
)  C_  E )
)

Proof of Theorem isdomn2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isdomn2.b . . 3  |-  B  =  ( Base `  R
)
2 eqid 2622 . . 3  |-  ( .r
`  R )  =  ( .r `  R
)
3 isdomn2.z . . 3  |-  .0.  =  ( 0g `  R )
41, 2, 3isdomn 19294 . 2  |-  ( R  e. Domn 
<->  ( R  e. NzRing  /\  A. x  e.  B  A. y  e.  B  (
( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
) ) )
5 dfss3 3592 . . . 4  |-  ( ( B  \  {  .0.  } )  C_  E  <->  A. x  e.  ( B  \  {  .0.  } ) x  e.  E )
6 isdomn2.t . . . . . . . . 9  |-  E  =  (RLReg `  R )
76, 1, 2, 3isrrg 19288 . . . . . . . 8  |-  ( x  e.  E  <->  ( x  e.  B  /\  A. y  e.  B  ( (
x ( .r `  R ) y )  =  .0.  ->  y  =  .0.  ) ) )
87baib 944 . . . . . . 7  |-  ( x  e.  B  ->  (
x  e.  E  <->  A. y  e.  B  ( (
x ( .r `  R ) y )  =  .0.  ->  y  =  .0.  ) ) )
98imbi2d 330 . . . . . 6  |-  ( x  e.  B  ->  (
( x  =/=  .0.  ->  x  e.  E )  <-> 
( x  =/=  .0.  ->  A. y  e.  B  ( ( x ( .r `  R ) y )  =  .0. 
->  y  =  .0.  ) ) ) )
109ralbiia 2979 . . . . 5  |-  ( A. x  e.  B  (
x  =/=  .0.  ->  x  e.  E )  <->  A. x  e.  B  ( x  =/=  .0.  ->  A. y  e.  B  ( (
x ( .r `  R ) y )  =  .0.  ->  y  =  .0.  ) ) )
11 eldifsn 4317 . . . . . . . 8  |-  ( x  e.  ( B  \  {  .0.  } )  <->  ( x  e.  B  /\  x  =/=  .0.  ) )
1211imbi1i 339 . . . . . . 7  |-  ( ( x  e.  ( B 
\  {  .0.  }
)  ->  x  e.  E )  <->  ( (
x  e.  B  /\  x  =/=  .0.  )  ->  x  e.  E )
)
13 impexp 462 . . . . . . 7  |-  ( ( ( x  e.  B  /\  x  =/=  .0.  )  ->  x  e.  E
)  <->  ( x  e.  B  ->  ( x  =/=  .0.  ->  x  e.  E ) ) )
1412, 13bitri 264 . . . . . 6  |-  ( ( x  e.  ( B 
\  {  .0.  }
)  ->  x  e.  E )  <->  ( x  e.  B  ->  ( x  =/=  .0.  ->  x  e.  E ) ) )
1514ralbii2 2978 . . . . 5  |-  ( A. x  e.  ( B  \  {  .0.  } ) x  e.  E  <->  A. x  e.  B  ( x  =/=  .0.  ->  x  e.  E ) )
16 con34b 306 . . . . . . . . 9  |-  ( ( ( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
)  <->  ( -.  (
x  =  .0.  \/  y  =  .0.  )  ->  -.  ( x ( .r `  R ) y )  =  .0.  ) )
17 impexp 462 . . . . . . . . . 10  |-  ( ( ( -.  x  =  .0.  /\  -.  y  =  .0.  )  ->  -.  ( x ( .r
`  R ) y )  =  .0.  )  <->  ( -.  x  =  .0. 
->  ( -.  y  =  .0.  ->  -.  (
x ( .r `  R ) y )  =  .0.  ) ) )
18 ioran 511 . . . . . . . . . . 11  |-  ( -.  ( x  =  .0. 
\/  y  =  .0.  )  <->  ( -.  x  =  .0.  /\  -.  y  =  .0.  ) )
1918imbi1i 339 . . . . . . . . . 10  |-  ( ( -.  ( x  =  .0.  \/  y  =  .0.  )  ->  -.  ( x ( .r
`  R ) y )  =  .0.  )  <->  ( ( -.  x  =  .0.  /\  -.  y  =  .0.  )  ->  -.  ( x ( .r
`  R ) y )  =  .0.  )
)
20 df-ne 2795 . . . . . . . . . . 11  |-  ( x  =/=  .0.  <->  -.  x  =  .0.  )
21 con34b 306 . . . . . . . . . . 11  |-  ( ( ( x ( .r
`  R ) y )  =  .0.  ->  y  =  .0.  )  <->  ( -.  y  =  .0.  ->  -.  ( x ( .r
`  R ) y )  =  .0.  )
)
2220, 21imbi12i 340 . . . . . . . . . 10  |-  ( ( x  =/=  .0.  ->  ( ( x ( .r
`  R ) y )  =  .0.  ->  y  =  .0.  ) )  <-> 
( -.  x  =  .0.  ->  ( -.  y  =  .0.  ->  -.  ( x ( .r
`  R ) y )  =  .0.  )
) )
2317, 19, 223bitr4i 292 . . . . . . . . 9  |-  ( ( -.  ( x  =  .0.  \/  y  =  .0.  )  ->  -.  ( x ( .r
`  R ) y )  =  .0.  )  <->  ( x  =/=  .0.  ->  ( ( x ( .r
`  R ) y )  =  .0.  ->  y  =  .0.  ) ) )
2416, 23bitri 264 . . . . . . . 8  |-  ( ( ( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
)  <->  ( x  =/= 
.0.  ->  ( ( x ( .r `  R
) y )  =  .0.  ->  y  =  .0.  ) ) )
2524ralbii 2980 . . . . . . 7  |-  ( A. y  e.  B  (
( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
)  <->  A. y  e.  B  ( x  =/=  .0.  ->  ( ( x ( .r `  R ) y )  =  .0. 
->  y  =  .0.  ) ) )
26 r19.21v 2960 . . . . . . 7  |-  ( A. y  e.  B  (
x  =/=  .0.  ->  ( ( x ( .r
`  R ) y )  =  .0.  ->  y  =  .0.  ) )  <-> 
( x  =/=  .0.  ->  A. y  e.  B  ( ( x ( .r `  R ) y )  =  .0. 
->  y  =  .0.  ) ) )
2725, 26bitri 264 . . . . . 6  |-  ( A. y  e.  B  (
( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
)  <->  ( x  =/= 
.0.  ->  A. y  e.  B  ( ( x ( .r `  R ) y )  =  .0. 
->  y  =  .0.  ) ) )
2827ralbii 2980 . . . . 5  |-  ( A. x  e.  B  A. y  e.  B  (
( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
)  <->  A. x  e.  B  ( x  =/=  .0.  ->  A. y  e.  B  ( ( x ( .r `  R ) y )  =  .0. 
->  y  =  .0.  ) ) )
2910, 15, 283bitr4i 292 . . . 4  |-  ( A. x  e.  ( B  \  {  .0.  } ) x  e.  E  <->  A. x  e.  B  A. y  e.  B  ( (
x ( .r `  R ) y )  =  .0.  ->  (
x  =  .0.  \/  y  =  .0.  )
) )
305, 29bitr2i 265 . . 3  |-  ( A. x  e.  B  A. y  e.  B  (
( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
)  <->  ( B  \  {  .0.  } )  C_  E )
3130anbi2i 730 . 2  |-  ( ( R  e. NzRing  /\  A. x  e.  B  A. y  e.  B  ( (
x ( .r `  R ) y )  =  .0.  ->  (
x  =  .0.  \/  y  =  .0.  )
) )  <->  ( R  e. NzRing  /\  ( B  \  {  .0.  } )  C_  E ) )
324, 31bitri 264 1  |-  ( R  e. Domn 
<->  ( R  e. NzRing  /\  ( B  \  {  .0.  }
)  C_  E )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    \ cdif 3571    C_ wss 3574   {csn 4177   ` cfv 5888  (class class class)co 6650   Basecbs 15857   .rcmulr 15942   0gc0g 16100  NzRingcnzr 19257  RLRegcrlreg 19279  Domncdomn 19280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-rlreg 19283  df-domn 19284
This theorem is referenced by:  domnrrg  19300  drngdomn  19303
  Copyright terms: Public domain W3C validator