| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isdomn2 | Structured version Visualization version Unicode version | ||
| Description: A ring is a domain iff all nonzero elements are nonzero-divisors. (Contributed by Mario Carneiro, 28-Mar-2015.) |
| Ref | Expression |
|---|---|
| isdomn2.b |
|
| isdomn2.t |
|
| isdomn2.z |
|
| Ref | Expression |
|---|---|
| isdomn2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdomn2.b |
. . 3
| |
| 2 | eqid 2622 |
. . 3
| |
| 3 | isdomn2.z |
. . 3
| |
| 4 | 1, 2, 3 | isdomn 19294 |
. 2
|
| 5 | dfss3 3592 |
. . . 4
| |
| 6 | isdomn2.t |
. . . . . . . . 9
| |
| 7 | 6, 1, 2, 3 | isrrg 19288 |
. . . . . . . 8
|
| 8 | 7 | baib 944 |
. . . . . . 7
|
| 9 | 8 | imbi2d 330 |
. . . . . 6
|
| 10 | 9 | ralbiia 2979 |
. . . . 5
|
| 11 | eldifsn 4317 |
. . . . . . . 8
| |
| 12 | 11 | imbi1i 339 |
. . . . . . 7
|
| 13 | impexp 462 |
. . . . . . 7
| |
| 14 | 12, 13 | bitri 264 |
. . . . . 6
|
| 15 | 14 | ralbii2 2978 |
. . . . 5
|
| 16 | con34b 306 |
. . . . . . . . 9
| |
| 17 | impexp 462 |
. . . . . . . . . 10
| |
| 18 | ioran 511 |
. . . . . . . . . . 11
| |
| 19 | 18 | imbi1i 339 |
. . . . . . . . . 10
|
| 20 | df-ne 2795 |
. . . . . . . . . . 11
| |
| 21 | con34b 306 |
. . . . . . . . . . 11
| |
| 22 | 20, 21 | imbi12i 340 |
. . . . . . . . . 10
|
| 23 | 17, 19, 22 | 3bitr4i 292 |
. . . . . . . . 9
|
| 24 | 16, 23 | bitri 264 |
. . . . . . . 8
|
| 25 | 24 | ralbii 2980 |
. . . . . . 7
|
| 26 | r19.21v 2960 |
. . . . . . 7
| |
| 27 | 25, 26 | bitri 264 |
. . . . . 6
|
| 28 | 27 | ralbii 2980 |
. . . . 5
|
| 29 | 10, 15, 28 | 3bitr4i 292 |
. . . 4
|
| 30 | 5, 29 | bitr2i 265 |
. . 3
|
| 31 | 30 | anbi2i 730 |
. 2
|
| 32 | 4, 31 | bitri 264 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-rlreg 19283 df-domn 19284 |
| This theorem is referenced by: domnrrg 19300 drngdomn 19303 |
| Copyright terms: Public domain | W3C validator |