MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unitrrg Structured version   Visualization version   Unicode version

Theorem unitrrg 19293
Description: Units are regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015.)
Hypotheses
Ref Expression
unitrrg.e  |-  E  =  (RLReg `  R )
unitrrg.u  |-  U  =  (Unit `  R )
Assertion
Ref Expression
unitrrg  |-  ( R  e.  Ring  ->  U  C_  E )

Proof of Theorem unitrrg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
2 unitrrg.u . . . . . 6  |-  U  =  (Unit `  R )
31, 2unitcl 18659 . . . . 5  |-  ( x  e.  U  ->  x  e.  ( Base `  R
) )
43adantl 482 . . . 4  |-  ( ( R  e.  Ring  /\  x  e.  U )  ->  x  e.  ( Base `  R
) )
5 oveq2 6658 . . . . . 6  |-  ( ( x ( .r `  R ) y )  =  ( 0g `  R )  ->  (
( ( invr `  R
) `  x )
( .r `  R
) ( x ( .r `  R ) y ) )  =  ( ( ( invr `  R ) `  x
) ( .r `  R ) ( 0g
`  R ) ) )
6 eqid 2622 . . . . . . . . . . 11  |-  ( invr `  R )  =  (
invr `  R )
7 eqid 2622 . . . . . . . . . . 11  |-  ( .r
`  R )  =  ( .r `  R
)
8 eqid 2622 . . . . . . . . . . 11  |-  ( 1r
`  R )  =  ( 1r `  R
)
92, 6, 7, 8unitlinv 18677 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  x  e.  U )  ->  (
( ( invr `  R
) `  x )
( .r `  R
) x )  =  ( 1r `  R
) )
109adantr 481 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  x  e.  U )  /\  y  e.  (
Base `  R )
)  ->  ( (
( invr `  R ) `  x ) ( .r
`  R ) x )  =  ( 1r
`  R ) )
1110oveq1d 6665 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  x  e.  U )  /\  y  e.  (
Base `  R )
)  ->  ( (
( ( invr `  R
) `  x )
( .r `  R
) x ) ( .r `  R ) y )  =  ( ( 1r `  R
) ( .r `  R ) y ) )
12 simpll 790 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  x  e.  U )  /\  y  e.  (
Base `  R )
)  ->  R  e.  Ring )
132, 6, 1ringinvcl 18676 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  x  e.  U )  ->  (
( invr `  R ) `  x )  e.  (
Base `  R )
)
1413adantr 481 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  x  e.  U )  /\  y  e.  (
Base `  R )
)  ->  ( ( invr `  R ) `  x )  e.  (
Base `  R )
)
154adantr 481 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  x  e.  U )  /\  y  e.  (
Base `  R )
)  ->  x  e.  ( Base `  R )
)
16 simpr 477 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  x  e.  U )  /\  y  e.  (
Base `  R )
)  ->  y  e.  ( Base `  R )
)
171, 7ringass 18564 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  (
( ( invr `  R
) `  x )  e.  ( Base `  R
)  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) ) )  ->  ( (
( ( invr `  R
) `  x )
( .r `  R
) x ) ( .r `  R ) y )  =  ( ( ( invr `  R
) `  x )
( .r `  R
) ( x ( .r `  R ) y ) ) )
1812, 14, 15, 16, 17syl13anc 1328 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  x  e.  U )  /\  y  e.  (
Base `  R )
)  ->  ( (
( ( invr `  R
) `  x )
( .r `  R
) x ) ( .r `  R ) y )  =  ( ( ( invr `  R
) `  x )
( .r `  R
) ( x ( .r `  R ) y ) ) )
191, 7, 8ringlidm 18571 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  y  e.  ( Base `  R
) )  ->  (
( 1r `  R
) ( .r `  R ) y )  =  y )
2019adantlr 751 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  x  e.  U )  /\  y  e.  (
Base `  R )
)  ->  ( ( 1r `  R ) ( .r `  R ) y )  =  y )
2111, 18, 203eqtr3d 2664 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  x  e.  U )  /\  y  e.  (
Base `  R )
)  ->  ( (
( invr `  R ) `  x ) ( .r
`  R ) ( x ( .r `  R ) y ) )  =  y )
22 eqid 2622 . . . . . . . . 9  |-  ( 0g
`  R )  =  ( 0g `  R
)
231, 7, 22ringrz 18588 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
( invr `  R ) `  x )  e.  (
Base `  R )
)  ->  ( (
( invr `  R ) `  x ) ( .r
`  R ) ( 0g `  R ) )  =  ( 0g
`  R ) )
2412, 14, 23syl2anc 693 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  x  e.  U )  /\  y  e.  (
Base `  R )
)  ->  ( (
( invr `  R ) `  x ) ( .r
`  R ) ( 0g `  R ) )  =  ( 0g
`  R ) )
2521, 24eqeq12d 2637 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  x  e.  U )  /\  y  e.  (
Base `  R )
)  ->  ( (
( ( invr `  R
) `  x )
( .r `  R
) ( x ( .r `  R ) y ) )  =  ( ( ( invr `  R ) `  x
) ( .r `  R ) ( 0g
`  R ) )  <-> 
y  =  ( 0g
`  R ) ) )
265, 25syl5ib 234 . . . . 5  |-  ( ( ( R  e.  Ring  /\  x  e.  U )  /\  y  e.  (
Base `  R )
)  ->  ( (
x ( .r `  R ) y )  =  ( 0g `  R )  ->  y  =  ( 0g `  R ) ) )
2726ralrimiva 2966 . . . 4  |-  ( ( R  e.  Ring  /\  x  e.  U )  ->  A. y  e.  ( Base `  R
) ( ( x ( .r `  R
) y )  =  ( 0g `  R
)  ->  y  =  ( 0g `  R ) ) )
28 unitrrg.e . . . . 5  |-  E  =  (RLReg `  R )
2928, 1, 7, 22isrrg 19288 . . . 4  |-  ( x  e.  E  <->  ( x  e.  ( Base `  R
)  /\  A. y  e.  ( Base `  R
) ( ( x ( .r `  R
) y )  =  ( 0g `  R
)  ->  y  =  ( 0g `  R ) ) ) )
304, 27, 29sylanbrc 698 . . 3  |-  ( ( R  e.  Ring  /\  x  e.  U )  ->  x  e.  E )
3130ex 450 . 2  |-  ( R  e.  Ring  ->  ( x  e.  U  ->  x  e.  E ) )
3231ssrdv 3609 1  |-  ( R  e.  Ring  ->  U  C_  E )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   ` cfv 5888  (class class class)co 6650   Basecbs 15857   .rcmulr 15942   0gc0g 16100   1rcur 18501   Ringcrg 18547  Unitcui 18639   invrcinvr 18671  RLRegcrlreg 19279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-rlreg 19283
This theorem is referenced by:  drngdomn  19303  znrrg  19914  deg1invg  23866  ply1divalg  23897  uc1pmon1p  23911  fta1glem1  23925  ig1peu  23931  mon1psubm  37784
  Copyright terms: Public domain W3C validator