Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exidres Structured version   Visualization version   Unicode version

Theorem exidres 33677
Description: The restriction of a binary operation with identity to a subset containing the identity has an identity element. (Contributed by Jeff Madsen, 8-Jun-2010.) (Revised by Mario Carneiro, 23-Dec-2013.)
Hypotheses
Ref Expression
exidres.1  |-  X  =  ran  G
exidres.2  |-  U  =  (GId `  G )
exidres.3  |-  H  =  ( G  |`  ( Y  X.  Y ) )
Assertion
Ref Expression
exidres  |-  ( ( G  e.  ( Magma  i^i 
ExId  )  /\  Y  C_  X  /\  U  e.  Y
)  ->  H  e.  ExId 
)

Proof of Theorem exidres
Dummy variables  x  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exidres.1 . . . 4  |-  X  =  ran  G
2 exidres.2 . . . 4  |-  U  =  (GId `  G )
3 exidres.3 . . . 4  |-  H  =  ( G  |`  ( Y  X.  Y ) )
41, 2, 3exidreslem 33676 . . 3  |-  ( ( G  e.  ( Magma  i^i 
ExId  )  /\  Y  C_  X  /\  U  e.  Y
)  ->  ( U  e.  dom  dom  H  /\  A. x  e.  dom  dom  H ( ( U H x )  =  x  /\  ( x H U )  =  x ) ) )
5 oveq1 6657 . . . . . . 7  |-  ( u  =  U  ->  (
u H x )  =  ( U H x ) )
65eqeq1d 2624 . . . . . 6  |-  ( u  =  U  ->  (
( u H x )  =  x  <->  ( U H x )  =  x ) )
7 oveq2 6658 . . . . . . 7  |-  ( u  =  U  ->  (
x H u )  =  ( x H U ) )
87eqeq1d 2624 . . . . . 6  |-  ( u  =  U  ->  (
( x H u )  =  x  <->  ( x H U )  =  x ) )
96, 8anbi12d 747 . . . . 5  |-  ( u  =  U  ->  (
( ( u H x )  =  x  /\  ( x H u )  =  x )  <->  ( ( U H x )  =  x  /\  ( x H U )  =  x ) ) )
109ralbidv 2986 . . . 4  |-  ( u  =  U  ->  ( A. x  e.  dom  dom 
H ( ( u H x )  =  x  /\  ( x H u )  =  x )  <->  A. x  e.  dom  dom  H (
( U H x )  =  x  /\  ( x H U )  =  x ) ) )
1110rspcev 3309 . . 3  |-  ( ( U  e.  dom  dom  H  /\  A. x  e. 
dom  dom  H ( ( U H x )  =  x  /\  (
x H U )  =  x ) )  ->  E. u  e.  dom  dom 
H A. x  e. 
dom  dom  H ( ( u H x )  =  x  /\  (
x H u )  =  x ) )
124, 11syl 17 . 2  |-  ( ( G  e.  ( Magma  i^i 
ExId  )  /\  Y  C_  X  /\  U  e.  Y
)  ->  E. u  e.  dom  dom  H A. x  e.  dom  dom  H
( ( u H x )  =  x  /\  ( x H u )  =  x ) )
13 resexg 5442 . . . . 5  |-  ( G  e.  ( Magma  i^i  ExId  )  ->  ( G  |`  ( Y  X.  Y
) )  e.  _V )
143, 13syl5eqel 2705 . . . 4  |-  ( G  e.  ( Magma  i^i  ExId  )  ->  H  e.  _V )
15 eqid 2622 . . . . 5  |-  dom  dom  H  =  dom  dom  H
1615isexid 33646 . . . 4  |-  ( H  e.  _V  ->  ( H  e.  ExId  <->  E. u  e.  dom  dom  H A. x  e.  dom  dom  H
( ( u H x )  =  x  /\  ( x H u )  =  x ) ) )
1714, 16syl 17 . . 3  |-  ( G  e.  ( Magma  i^i  ExId  )  ->  ( H  e. 
ExId 
<->  E. u  e.  dom  dom 
H A. x  e. 
dom  dom  H ( ( u H x )  =  x  /\  (
x H u )  =  x ) ) )
18173ad2ant1 1082 . 2  |-  ( ( G  e.  ( Magma  i^i 
ExId  )  /\  Y  C_  X  /\  U  e.  Y
)  ->  ( H  e.  ExId  <->  E. u  e.  dom  dom 
H A. x  e. 
dom  dom  H ( ( u H x )  =  x  /\  (
x H u )  =  x ) ) )
1912, 18mpbird 247 1  |-  ( ( G  e.  ( Magma  i^i 
ExId  )  /\  Y  C_  X  /\  U  e.  Y
)  ->  H  e.  ExId 
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574    X. cxp 5112   dom cdm 5114   ran crn 5115    |` cres 5116   ` cfv 5888  (class class class)co 6650  GIdcgi 27344    ExId cexid 33643   Magmacmagm 33647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-riota 6611  df-ov 6653  df-gid 27348  df-exid 33644  df-mgmOLD 33648
This theorem is referenced by:  exidresid  33678
  Copyright terms: Public domain W3C validator