MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin2 Structured version   Visualization version   Unicode version

Theorem isfin2 9116
Description: Definition of a II-finite set. (Contributed by Stefan O'Rear, 16-May-2015.)
Assertion
Ref Expression
isfin2  |-  ( A  e.  V  ->  ( A  e. FinII 
<-> 
A. y  e.  ~P  ~P A ( ( y  =/=  (/)  /\ [ C.]  Or  y
)  ->  U. y  e.  y ) ) )
Distinct variable group:    y, A
Allowed substitution hint:    V( y)

Proof of Theorem isfin2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 pweq 4161 . . . 4  |-  ( x  =  A  ->  ~P x  =  ~P A
)
21pweqd 4163 . . 3  |-  ( x  =  A  ->  ~P ~P x  =  ~P ~P A )
32raleqdv 3144 . 2  |-  ( x  =  A  ->  ( A. y  e.  ~P  ~P x ( ( y  =/=  (/)  /\ [ C.]  Or  y
)  ->  U. y  e.  y )  <->  A. y  e.  ~P  ~P A ( ( y  =/=  (/)  /\ [ C.]  Or  y
)  ->  U. y  e.  y ) ) )
4 df-fin2 9108 . 2  |- FinII  =  {
x  |  A. y  e.  ~P  ~P x ( ( y  =/=  (/)  /\ [ C.]  Or  y
)  ->  U. y  e.  y ) }
53, 4elab2g 3353 1  |-  ( A  e.  V  ->  ( A  e. FinII 
<-> 
A. y  e.  ~P  ~P A ( ( y  =/=  (/)  /\ [ C.]  Or  y
)  ->  U. y  e.  y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   (/)c0 3915   ~Pcpw 4158   U.cuni 4436    Or wor 5034   [ C.] crpss 6936  FinIIcfin2 9101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202  df-in 3581  df-ss 3588  df-pw 4160  df-fin2 9108
This theorem is referenced by:  fin2i  9117  isfin2-2  9141  ssfin2  9142  enfin2i  9143  fin12  9235  fin1a2s  9236
  Copyright terms: Public domain W3C validator