MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin12 Structured version   Visualization version   Unicode version

Theorem fin12 9235
Description: Weak theorem which skips Ia but has a trivial proof, needed to prove fin1a2 9237. (Contributed by Stefan O'Rear, 8-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fin12  |-  ( A  e.  Fin  ->  A  e. FinII
)

Proof of Theorem fin12
Dummy variables  b 
c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3203 . . . . . . . 8  |-  b  e. 
_V
21a1i 11 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  b  e.  ~P ~P A )  /\  (
b  =/=  (/)  /\ [ C.]  Or  b
) )  ->  b  e.  _V )
3 isfin1-3 9208 . . . . . . . . 9  |-  ( A  e.  Fin  ->  ( A  e.  Fin  <->  `' [ C.]  Fr  ~P A ) )
43ibi 256 . . . . . . . 8  |-  ( A  e.  Fin  ->  `' [ C.] 
Fr  ~P A )
54ad2antrr 762 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  b  e.  ~P ~P A )  /\  (
b  =/=  (/)  /\ [ C.]  Or  b
) )  ->  `' [ C.] 
Fr  ~P A )
6 elpwi 4168 . . . . . . . 8  |-  ( b  e.  ~P ~P A  ->  b  C_  ~P A
)
76ad2antlr 763 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  b  e.  ~P ~P A )  /\  (
b  =/=  (/)  /\ [ C.]  Or  b
) )  ->  b  C_ 
~P A )
8 simprl 794 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  b  e.  ~P ~P A )  /\  (
b  =/=  (/)  /\ [ C.]  Or  b
) )  ->  b  =/=  (/) )
9 fri 5076 . . . . . . 7  |-  ( ( ( b  e.  _V  /\  `' [ C.]  Fr  ~P A
)  /\  ( b  C_ 
~P A  /\  b  =/=  (/) ) )  ->  E. c  e.  b  A. d  e.  b  -.  d `' [ C.]  c
)
102, 5, 7, 8, 9syl22anc 1327 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  b  e.  ~P ~P A )  /\  (
b  =/=  (/)  /\ [ C.]  Or  b
) )  ->  E. c  e.  b  A. d  e.  b  -.  d `' [ C.]  c )
11 vex 3203 . . . . . . . . . . 11  |-  d  e. 
_V
12 vex 3203 . . . . . . . . . . 11  |-  c  e. 
_V
1311, 12brcnv 5305 . . . . . . . . . 10  |-  ( d `' [ C.]  c  <->  c [ C.]  d
)
1411brrpss 6940 . . . . . . . . . 10  |-  ( c [ C.]  d  <->  c  C.  d
)
1513, 14bitri 264 . . . . . . . . 9  |-  ( d `' [ C.]  c  <->  c  C.  d
)
1615notbii 310 . . . . . . . 8  |-  ( -.  d `' [ C.]  c  <->  -.  c  C.  d )
1716ralbii 2980 . . . . . . 7  |-  ( A. d  e.  b  -.  d `' [ C.]  c  <->  A. d  e.  b  -.  c  C.  d )
1817rexbii 3041 . . . . . 6  |-  ( E. c  e.  b  A. d  e.  b  -.  d `' [ C.]  c  <->  E. c  e.  b  A. d  e.  b  -.  c  C.  d )
1910, 18sylib 208 . . . . 5  |-  ( ( ( A  e.  Fin  /\  b  e.  ~P ~P A )  /\  (
b  =/=  (/)  /\ [ C.]  Or  b
) )  ->  E. c  e.  b  A. d  e.  b  -.  c  C.  d )
20 sorpssuni 6946 . . . . . 6  |-  ( [ C.]  Or  b  ->  ( E. c  e.  b  A. d  e.  b  -.  c  C.  d  <->  U. b  e.  b ) )
2120ad2antll 765 . . . . 5  |-  ( ( ( A  e.  Fin  /\  b  e.  ~P ~P A )  /\  (
b  =/=  (/)  /\ [ C.]  Or  b
) )  ->  ( E. c  e.  b  A. d  e.  b  -.  c  C.  d  <->  U. b  e.  b ) )
2219, 21mpbid 222 . . . 4  |-  ( ( ( A  e.  Fin  /\  b  e.  ~P ~P A )  /\  (
b  =/=  (/)  /\ [ C.]  Or  b
) )  ->  U. b  e.  b )
2322ex 450 . . 3  |-  ( ( A  e.  Fin  /\  b  e.  ~P ~P A )  ->  (
( b  =/=  (/)  /\ [ C.]  Or  b
)  ->  U. b  e.  b ) )
2423ralrimiva 2966 . 2  |-  ( A  e.  Fin  ->  A. b  e.  ~P  ~P A ( ( b  =/=  (/)  /\ [ C.]  Or  b
)  ->  U. b  e.  b ) )
25 isfin2 9116 . 2  |-  ( A  e.  Fin  ->  ( A  e. FinII 
<-> 
A. b  e.  ~P  ~P A ( ( b  =/=  (/)  /\ [ C.]  Or  b
)  ->  U. b  e.  b ) ) )
2624, 25mpbird 247 1  |-  ( A  e.  Fin  ->  A  e. FinII
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574    C. wpss 3575   (/)c0 3915   ~Pcpw 4158   U.cuni 4436   class class class wbr 4653    Or wor 5034    Fr wfr 5070   `'ccnv 5113   [ C.] crpss 6936   Fincfn 7955  FinIIcfin2 9101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-rpss 6937  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fin2 9108
This theorem is referenced by:  fin1a2s  9236  fin1a2  9237  finngch  9477
  Copyright terms: Public domain W3C validator