MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin2i Structured version   Visualization version   Unicode version

Theorem fin2i 9117
Description: Property of a II-finite set. (Contributed by Stefan O'Rear, 16-May-2015.)
Assertion
Ref Expression
fin2i  |-  ( ( ( A  e. FinII  /\  B  C_ 
~P A )  /\  ( B  =/=  (/)  /\ [ C.]  Or  B
) )  ->  U. B  e.  B )

Proof of Theorem fin2i
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 pwexg 4850 . . . . 5  |-  ( A  e. FinII  ->  ~P A  e. 
_V )
2 elpw2g 4827 . . . . 5  |-  ( ~P A  e.  _V  ->  ( B  e.  ~P ~P A 
<->  B  C_  ~P A
) )
31, 2syl 17 . . . 4  |-  ( A  e. FinII  ->  ( B  e. 
~P ~P A  <->  B  C_  ~P A ) )
43biimpar 502 . . 3  |-  ( ( A  e. FinII  /\  B  C_  ~P A )  ->  B  e.  ~P ~P A )
5 isfin2 9116 . . . . 5  |-  ( A  e. FinII  ->  ( A  e. FinII  <->  A. y  e.  ~P  ~P A
( ( y  =/=  (/)  /\ [ C.]  Or  y
)  ->  U. y  e.  y ) ) )
65ibi 256 . . . 4  |-  ( A  e. FinII  ->  A. y  e.  ~P  ~P A ( ( y  =/=  (/)  /\ [ C.]  Or  y
)  ->  U. y  e.  y ) )
76adantr 481 . . 3  |-  ( ( A  e. FinII  /\  B  C_  ~P A )  ->  A. y  e.  ~P  ~P A ( ( y  =/=  (/)  /\ [ C.]  Or  y
)  ->  U. y  e.  y ) )
8 neeq1 2856 . . . . . 6  |-  ( y  =  B  ->  (
y  =/=  (/)  <->  B  =/=  (/) ) )
9 soeq2 5055 . . . . . 6  |-  ( y  =  B  ->  ( [ C.] 
Or  y  <-> [ C.]  Or  B
) )
108, 9anbi12d 747 . . . . 5  |-  ( y  =  B  ->  (
( y  =/=  (/)  /\ [ C.]  Or  y
)  <->  ( B  =/=  (/)  /\ [ C.]  Or  B
) ) )
11 unieq 4444 . . . . . 6  |-  ( y  =  B  ->  U. y  =  U. B )
12 id 22 . . . . . 6  |-  ( y  =  B  ->  y  =  B )
1311, 12eleq12d 2695 . . . . 5  |-  ( y  =  B  ->  ( U. y  e.  y  <->  U. B  e.  B ) )
1410, 13imbi12d 334 . . . 4  |-  ( y  =  B  ->  (
( ( y  =/=  (/)  /\ [ C.]  Or  y
)  ->  U. y  e.  y )  <->  ( ( B  =/=  (/)  /\ [ C.]  Or  B
)  ->  U. B  e.  B ) ) )
1514rspcv 3305 . . 3  |-  ( B  e.  ~P ~P A  ->  ( A. y  e. 
~P  ~P A ( ( y  =/=  (/)  /\ [ C.]  Or  y
)  ->  U. y  e.  y )  ->  (
( B  =/=  (/)  /\ [ C.]  Or  B
)  ->  U. B  e.  B ) ) )
164, 7, 15sylc 65 . 2  |-  ( ( A  e. FinII  /\  B  C_  ~P A )  ->  (
( B  =/=  (/)  /\ [ C.]  Or  B
)  ->  U. B  e.  B ) )
1716imp 445 1  |-  ( ( ( A  e. FinII  /\  B  C_ 
~P A )  /\  ( B  =/=  (/)  /\ [ C.]  Or  B
) )  ->  U. B  e.  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   U.cuni 4436    Or wor 5034   [ C.] crpss 6936  FinIIcfin2 9101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-pow 4843
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-v 3202  df-in 3581  df-ss 3588  df-pw 4160  df-uni 4437  df-po 5035  df-so 5036  df-fin2 9108
This theorem is referenced by:  fin2i2  9140  ssfin2  9142  enfin2i  9143  fin1a2lem13  9234
  Copyright terms: Public domain W3C validator