MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssfin2 Structured version   Visualization version   Unicode version

Theorem ssfin2 9142
Description: A subset of a II-finite set is II-finite. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
ssfin2  |-  ( ( A  e. FinII  /\  B  C_  A
)  ->  B  e. FinII )

Proof of Theorem ssfin2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpll 790 . . . 4  |-  ( ( ( A  e. FinII  /\  B  C_  A )  /\  x  e.  ~P ~P B )  ->  A  e. FinII )
2 elpwi 4168 . . . . . 6  |-  ( x  e.  ~P ~P B  ->  x  C_  ~P B
)
32adantl 482 . . . . 5  |-  ( ( ( A  e. FinII  /\  B  C_  A )  /\  x  e.  ~P ~P B )  ->  x  C_  ~P B )
4 simplr 792 . . . . . 6  |-  ( ( ( A  e. FinII  /\  B  C_  A )  /\  x  e.  ~P ~P B )  ->  B  C_  A
)
5 sspwb 4917 . . . . . 6  |-  ( B 
C_  A  <->  ~P B  C_ 
~P A )
64, 5sylib 208 . . . . 5  |-  ( ( ( A  e. FinII  /\  B  C_  A )  /\  x  e.  ~P ~P B )  ->  ~P B  C_  ~P A )
73, 6sstrd 3613 . . . 4  |-  ( ( ( A  e. FinII  /\  B  C_  A )  /\  x  e.  ~P ~P B )  ->  x  C_  ~P A )
8 fin2i 9117 . . . . 5  |-  ( ( ( A  e. FinII  /\  x  C_ 
~P A )  /\  ( x  =/=  (/)  /\ [ C.]  Or  x
) )  ->  U. x  e.  x )
98ex 450 . . . 4  |-  ( ( A  e. FinII  /\  x  C_  ~P A )  ->  (
( x  =/=  (/)  /\ [ C.]  Or  x
)  ->  U. x  e.  x ) )
101, 7, 9syl2anc 693 . . 3  |-  ( ( ( A  e. FinII  /\  B  C_  A )  /\  x  e.  ~P ~P B )  ->  ( ( x  =/=  (/)  /\ [ C.]  Or  x
)  ->  U. x  e.  x ) )
1110ralrimiva 2966 . 2  |-  ( ( A  e. FinII  /\  B  C_  A
)  ->  A. x  e.  ~P  ~P B ( ( x  =/=  (/)  /\ [ C.]  Or  x
)  ->  U. x  e.  x ) )
12 ssexg 4804 . . . 4  |-  ( ( B  C_  A  /\  A  e. FinII )  ->  B  e.  _V )
1312ancoms 469 . . 3  |-  ( ( A  e. FinII  /\  B  C_  A
)  ->  B  e.  _V )
14 isfin2 9116 . . 3  |-  ( B  e.  _V  ->  ( B  e. FinII 
<-> 
A. x  e.  ~P  ~P B ( ( x  =/=  (/)  /\ [ C.]  Or  x
)  ->  U. x  e.  x ) ) )
1513, 14syl 17 . 2  |-  ( ( A  e. FinII  /\  B  C_  A
)  ->  ( B  e. FinII  <->  A. x  e.  ~P  ~P B ( ( x  =/=  (/)  /\ [ C.]  Or  x
)  ->  U. x  e.  x ) ) )
1611, 15mpbird 247 1  |-  ( ( A  e. FinII  /\  B  C_  A
)  ->  B  e. FinII )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   U.cuni 4436    Or wor 5034   [ C.] crpss 6936  FinIIcfin2 9101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-pw 4160  df-sn 4178  df-pr 4180  df-uni 4437  df-po 5035  df-so 5036  df-fin2 9108
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator