MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ibllem Structured version   Visualization version   Unicode version

Theorem ibllem 23531
Description: Conditioned equality theorem for the if statement. (Contributed by Mario Carneiro, 31-Jul-2014.)
Hypothesis
Ref Expression
ibllem.1  |-  ( (
ph  /\  x  e.  A )  ->  B  =  C )
Assertion
Ref Expression
ibllem  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  =  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )

Proof of Theorem ibllem
StepHypRef Expression
1 ibllem.1 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  B  =  C )
21breq2d 4665 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
0  <_  B  <->  0  <_  C ) )
32pm5.32da 673 . . 3  |-  ( ph  ->  ( ( x  e.  A  /\  0  <_  B )  <->  ( x  e.  A  /\  0  <_  C ) ) )
43ifbid 4108 . 2  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  =  if ( ( x  e.  A  /\  0  <_  C ) ,  B ,  0 ) )
51adantrr 753 . . 3  |-  ( (
ph  /\  ( x  e.  A  /\  0  <_  C ) )  ->  B  =  C )
65ifeq1da 4116 . 2  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_  C ) ,  B ,  0 )  =  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )
74, 6eqtrd 2656 1  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_  B ) ,  B ,  0 )  =  if ( ( x  e.  A  /\  0  <_  C ) ,  C ,  0 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   ifcif 4086   class class class wbr 4653   0cc0 9936    <_ cle 10075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654
This theorem is referenced by:  isibl  23532  isibl2  23533  iblitg  23535  iblcnlem1  23554  iblcnlem  23555  itgcnlem  23556  iblrelem  23557  itgrevallem1  23561  itgeqa  23580
  Copyright terms: Public domain W3C validator