| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isibl2 | Structured version Visualization version Unicode version | ||
| Description: The predicate " |
| Ref | Expression |
|---|---|
| isibl.1 |
|
| isibl.2 |
|
| isibl2.3 |
|
| Ref | Expression |
|---|---|
| isibl2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isibl.1 |
. . 3
| |
| 2 | nfv 1843 |
. . . . . . 7
| |
| 3 | nfcv 2764 |
. . . . . . . 8
| |
| 4 | nfcv 2764 |
. . . . . . . 8
| |
| 5 | nfcv 2764 |
. . . . . . . . 9
| |
| 6 | nffvmpt1 6199 |
. . . . . . . . . 10
| |
| 7 | nfcv 2764 |
. . . . . . . . . 10
| |
| 8 | nfcv 2764 |
. . . . . . . . . 10
| |
| 9 | 6, 7, 8 | nfov 6676 |
. . . . . . . . 9
|
| 10 | 5, 9 | nffv 6198 |
. . . . . . . 8
|
| 11 | 3, 4, 10 | nfbr 4699 |
. . . . . . 7
|
| 12 | 2, 11 | nfan 1828 |
. . . . . 6
|
| 13 | 12, 10, 3 | nfif 4115 |
. . . . 5
|
| 14 | nfcv 2764 |
. . . . 5
| |
| 15 | eleq1 2689 |
. . . . . . 7
| |
| 16 | fveq2 6191 |
. . . . . . . . . 10
| |
| 17 | 16 | oveq1d 6665 |
. . . . . . . . 9
|
| 18 | 17 | fveq2d 6195 |
. . . . . . . 8
|
| 19 | 18 | breq2d 4665 |
. . . . . . 7
|
| 20 | 15, 19 | anbi12d 747 |
. . . . . 6
|
| 21 | 20, 18 | ifbieq1d 4109 |
. . . . 5
|
| 22 | 13, 14, 21 | cbvmpt 4749 |
. . . 4
|
| 23 | simpr 477 |
. . . . . . . . . 10
| |
| 24 | isibl2.3 |
. . . . . . . . . 10
| |
| 25 | eqid 2622 |
. . . . . . . . . . 11
| |
| 26 | 25 | fvmpt2 6291 |
. . . . . . . . . 10
|
| 27 | 23, 24, 26 | syl2anc 693 |
. . . . . . . . 9
|
| 28 | 27 | oveq1d 6665 |
. . . . . . . 8
|
| 29 | 28 | fveq2d 6195 |
. . . . . . 7
|
| 30 | isibl.2 |
. . . . . . 7
| |
| 31 | 29, 30 | eqtr4d 2659 |
. . . . . 6
|
| 32 | 31 | ibllem 23531 |
. . . . 5
|
| 33 | 32 | mpteq2dv 4745 |
. . . 4
|
| 34 | 22, 33 | syl5eq 2668 |
. . 3
|
| 35 | 1, 34 | eqtr4d 2659 |
. 2
|
| 36 | eqidd 2623 |
. 2
| |
| 37 | 25, 24 | dmmptd 6024 |
. 2
|
| 38 | eqidd 2623 |
. 2
| |
| 39 | 35, 36, 37, 38 | isibl 23532 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-ibl 23391 |
| This theorem is referenced by: iblitg 23535 iblcnlem1 23554 iblss 23571 iblss2 23572 itgeqa 23580 iblconst 23584 iblabsr 23596 iblmulc2 23597 iblmulc2nc 33475 iblsplit 40182 |
| Copyright terms: Public domain | W3C validator |