MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isibl2 Structured version   Visualization version   Unicode version

Theorem isibl2 23533
Description: The predicate " F is integrable" when  F is a mapping operation. (Contributed by Mario Carneiro, 31-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
isibl.1  |-  ( ph  ->  G  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  T ) ,  T ,  0 ) ) )
isibl.2  |-  ( (
ph  /\  x  e.  A )  ->  T  =  ( Re `  ( B  /  (
_i ^ k ) ) ) )
isibl2.3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
Assertion
Ref Expression
isibl2  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L^1  <->  ( (
x  e.  A  |->  B )  e. MblFn  /\  A. k  e.  ( 0 ... 3
) ( S.2 `  G
)  e.  RR ) ) )
Distinct variable groups:    x, k, A    B, k    ph, k, x    x, V
Allowed substitution hints:    B( x)    T( x, k)    G( x, k)    V( k)

Proof of Theorem isibl2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 isibl.1 . . 3  |-  ( ph  ->  G  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  T ) ,  T ,  0 ) ) )
2 nfv 1843 . . . . . . 7  |-  F/ x  y  e.  A
3 nfcv 2764 . . . . . . . 8  |-  F/_ x
0
4 nfcv 2764 . . . . . . . 8  |-  F/_ x  <_
5 nfcv 2764 . . . . . . . . 9  |-  F/_ x Re
6 nffvmpt1 6199 . . . . . . . . . 10  |-  F/_ x
( ( x  e.  A  |->  B ) `  y )
7 nfcv 2764 . . . . . . . . . 10  |-  F/_ x  /
8 nfcv 2764 . . . . . . . . . 10  |-  F/_ x
( _i ^ k
)
96, 7, 8nfov 6676 . . . . . . . . 9  |-  F/_ x
( ( ( x  e.  A  |->  B ) `
 y )  / 
( _i ^ k
) )
105, 9nffv 6198 . . . . . . . 8  |-  F/_ x
( Re `  (
( ( x  e.  A  |->  B ) `  y )  /  (
_i ^ k ) ) )
113, 4, 10nfbr 4699 . . . . . . 7  |-  F/ x
0  <_  ( Re `  ( ( ( x  e.  A  |->  B ) `
 y )  / 
( _i ^ k
) ) )
122, 11nfan 1828 . . . . . 6  |-  F/ x
( y  e.  A  /\  0  <_  ( Re
`  ( ( ( x  e.  A  |->  B ) `  y )  /  ( _i ^
k ) ) ) )
1312, 10, 3nfif 4115 . . . . 5  |-  F/_ x if ( ( y  e.  A  /\  0  <_ 
( Re `  (
( ( x  e.  A  |->  B ) `  y )  /  (
_i ^ k ) ) ) ) ,  ( Re `  (
( ( x  e.  A  |->  B ) `  y )  /  (
_i ^ k ) ) ) ,  0 )
14 nfcv 2764 . . . . 5  |-  F/_ y if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( ( x  e.  A  |->  B ) `  x )  /  (
_i ^ k ) ) ) ) ,  ( Re `  (
( ( x  e.  A  |->  B ) `  x )  /  (
_i ^ k ) ) ) ,  0 )
15 eleq1 2689 . . . . . . 7  |-  ( y  =  x  ->  (
y  e.  A  <->  x  e.  A ) )
16 fveq2 6191 . . . . . . . . . 10  |-  ( y  =  x  ->  (
( x  e.  A  |->  B ) `  y
)  =  ( ( x  e.  A  |->  B ) `  x ) )
1716oveq1d 6665 . . . . . . . . 9  |-  ( y  =  x  ->  (
( ( x  e.  A  |->  B ) `  y )  /  (
_i ^ k ) )  =  ( ( ( x  e.  A  |->  B ) `  x
)  /  ( _i
^ k ) ) )
1817fveq2d 6195 . . . . . . . 8  |-  ( y  =  x  ->  (
Re `  ( (
( x  e.  A  |->  B ) `  y
)  /  ( _i
^ k ) ) )  =  ( Re
`  ( ( ( x  e.  A  |->  B ) `  x )  /  ( _i ^
k ) ) ) )
1918breq2d 4665 . . . . . . 7  |-  ( y  =  x  ->  (
0  <_  ( Re `  ( ( ( x  e.  A  |->  B ) `
 y )  / 
( _i ^ k
) ) )  <->  0  <_  ( Re `  ( ( ( x  e.  A  |->  B ) `  x
)  /  ( _i
^ k ) ) ) ) )
2015, 19anbi12d 747 . . . . . 6  |-  ( y  =  x  ->  (
( y  e.  A  /\  0  <_  ( Re
`  ( ( ( x  e.  A  |->  B ) `  y )  /  ( _i ^
k ) ) ) )  <->  ( x  e.  A  /\  0  <_ 
( Re `  (
( ( x  e.  A  |->  B ) `  x )  /  (
_i ^ k ) ) ) ) ) )
2120, 18ifbieq1d 4109 . . . . 5  |-  ( y  =  x  ->  if ( ( y  e.  A  /\  0  <_ 
( Re `  (
( ( x  e.  A  |->  B ) `  y )  /  (
_i ^ k ) ) ) ) ,  ( Re `  (
( ( x  e.  A  |->  B ) `  y )  /  (
_i ^ k ) ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  ( Re
`  ( ( ( x  e.  A  |->  B ) `  x )  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( ( ( x  e.  A  |->  B ) `  x )  /  ( _i ^
k ) ) ) ,  0 ) )
2213, 14, 21cbvmpt 4749 . . . 4  |-  ( y  e.  RR  |->  if ( ( y  e.  A  /\  0  <_  ( Re
`  ( ( ( x  e.  A  |->  B ) `  y )  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( ( ( x  e.  A  |->  B ) `  y )  /  ( _i ^
k ) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  ( Re `  ( ( ( x  e.  A  |->  B ) `
 x )  / 
( _i ^ k
) ) ) ) ,  ( Re `  ( ( ( x  e.  A  |->  B ) `
 x )  / 
( _i ^ k
) ) ) ,  0 ) )
23 simpr 477 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  A )
24 isibl2.3 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
25 eqid 2622 . . . . . . . . . . 11  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
2625fvmpt2 6291 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  B  e.  V )  ->  ( ( x  e.  A  |->  B ) `  x )  =  B )
2723, 24, 26syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  B ) `  x
)  =  B )
2827oveq1d 6665 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( x  e.  A  |->  B ) `  x )  /  (
_i ^ k ) )  =  ( B  /  ( _i ^
k ) ) )
2928fveq2d 6195 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  ( (
( x  e.  A  |->  B ) `  x
)  /  ( _i
^ k ) ) )  =  ( Re
`  ( B  / 
( _i ^ k
) ) ) )
30 isibl.2 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  T  =  ( Re `  ( B  /  (
_i ^ k ) ) ) )
3129, 30eqtr4d 2659 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  ( (
( x  e.  A  |->  B ) `  x
)  /  ( _i
^ k ) ) )  =  T )
3231ibllem 23531 . . . . 5  |-  ( ph  ->  if ( ( x  e.  A  /\  0  <_  ( Re `  (
( ( x  e.  A  |->  B ) `  x )  /  (
_i ^ k ) ) ) ) ,  ( Re `  (
( ( x  e.  A  |->  B ) `  x )  /  (
_i ^ k ) ) ) ,  0 )  =  if ( ( x  e.  A  /\  0  <_  T ) ,  T ,  0 ) )
3332mpteq2dv 4745 . . . 4  |-  ( ph  ->  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_ 
( Re `  (
( ( x  e.  A  |->  B ) `  x )  /  (
_i ^ k ) ) ) ) ,  ( Re `  (
( ( x  e.  A  |->  B ) `  x )  /  (
_i ^ k ) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  T ) ,  T ,  0 ) ) )
3422, 33syl5eq 2668 . . 3  |-  ( ph  ->  ( y  e.  RR  |->  if ( ( y  e.  A  /\  0  <_ 
( Re `  (
( ( x  e.  A  |->  B ) `  y )  /  (
_i ^ k ) ) ) ) ,  ( Re `  (
( ( x  e.  A  |->  B ) `  y )  /  (
_i ^ k ) ) ) ,  0 ) )  =  ( x  e.  RR  |->  if ( ( x  e.  A  /\  0  <_  T ) ,  T ,  0 ) ) )
351, 34eqtr4d 2659 . 2  |-  ( ph  ->  G  =  ( y  e.  RR  |->  if ( ( y  e.  A  /\  0  <_  ( Re
`  ( ( ( x  e.  A  |->  B ) `  y )  /  ( _i ^
k ) ) ) ) ,  ( Re
`  ( ( ( x  e.  A  |->  B ) `  y )  /  ( _i ^
k ) ) ) ,  0 ) ) )
36 eqidd 2623 . 2  |-  ( (
ph  /\  y  e.  A )  ->  (
Re `  ( (
( x  e.  A  |->  B ) `  y
)  /  ( _i
^ k ) ) )  =  ( Re
`  ( ( ( x  e.  A  |->  B ) `  y )  /  ( _i ^
k ) ) ) )
3725, 24dmmptd 6024 . 2  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  =  A )
38 eqidd 2623 . 2  |-  ( (
ph  /\  y  e.  A )  ->  (
( x  e.  A  |->  B ) `  y
)  =  ( ( x  e.  A  |->  B ) `  y ) )
3935, 36, 37, 38isibl 23532 1  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L^1  <->  ( (
x  e.  A  |->  B )  e. MblFn  /\  A. k  e.  ( 0 ... 3
) ( S.2 `  G
)  e.  RR ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   _ici 9938    <_ cle 10075    / cdiv 10684   3c3 11071   ...cfz 12326   ^cexp 12860   Recre 13837  MblFncmbf 23383   S.2citg2 23385   L^1cibl 23386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-ibl 23391
This theorem is referenced by:  iblitg  23535  iblcnlem1  23554  iblss  23571  iblss2  23572  itgeqa  23580  iblconst  23584  iblabsr  23596  iblmulc2  23597  iblmulc2nc  33475  iblsplit  40182
  Copyright terms: Public domain W3C validator