Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isltrn2N Structured version   Visualization version   Unicode version

Theorem isltrn2N 35406
Description: The predicate "is a lattice translation". Version of isltrn 35405 that considers only different  p and  q. TODO: Can this eliminate some separate proofs for the 
p  =  q case? (Contributed by NM, 22-Apr-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ltrnset.l  |-  .<_  =  ( le `  K )
ltrnset.j  |-  .\/  =  ( join `  K )
ltrnset.m  |-  ./\  =  ( meet `  K )
ltrnset.a  |-  A  =  ( Atoms `  K )
ltrnset.h  |-  H  =  ( LHyp `  K
)
ltrnset.d  |-  D  =  ( ( LDil `  K
) `  W )
ltrnset.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
isltrn2N  |-  ( ( K  e.  B  /\  W  e.  H )  ->  ( F  e.  T  <->  ( F  e.  D  /\  A. p  e.  A  A. q  e.  A  (
( -.  p  .<_  W  /\  -.  q  .<_  W  /\  p  =/=  q
)  ->  ( (
p  .\/  ( F `  p ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) ) ) ) )
Distinct variable groups:    q, p, A    K, p, q    W, p, q    F, p, q
Allowed substitution hints:    B( q, p)    D( q, p)    T( q, p)    H( q, p)    .\/ ( q, p)   
.<_ ( q, p)    ./\ ( q, p)

Proof of Theorem isltrn2N
StepHypRef Expression
1 ltrnset.l . . 3  |-  .<_  =  ( le `  K )
2 ltrnset.j . . 3  |-  .\/  =  ( join `  K )
3 ltrnset.m . . 3  |-  ./\  =  ( meet `  K )
4 ltrnset.a . . 3  |-  A  =  ( Atoms `  K )
5 ltrnset.h . . 3  |-  H  =  ( LHyp `  K
)
6 ltrnset.d . . 3  |-  D  =  ( ( LDil `  K
) `  W )
7 ltrnset.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
81, 2, 3, 4, 5, 6, 7isltrn 35405 . 2  |-  ( ( K  e.  B  /\  W  e.  H )  ->  ( F  e.  T  <->  ( F  e.  D  /\  A. p  e.  A  A. q  e.  A  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  (
( p  .\/  ( F `  p )
)  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) ) ) ) )
9 3simpa 1058 . . . . . 6  |-  ( ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  p  =/=  q )  -> 
( -.  p  .<_  W  /\  -.  q  .<_  W ) )
109imim1i 63 . . . . 5  |-  ( ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  (
( p  .\/  ( F `  p )
)  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) )  ->  (
( -.  p  .<_  W  /\  -.  q  .<_  W  /\  p  =/=  q
)  ->  ( (
p  .\/  ( F `  p ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) ) )
11 3anass 1042 . . . . . . . . 9  |-  ( ( p  =/=  q  /\  -.  p  .<_  W  /\  -.  q  .<_  W )  <-> 
( p  =/=  q  /\  ( -.  p  .<_  W  /\  -.  q  .<_  W ) ) )
12 3anrot 1043 . . . . . . . . 9  |-  ( ( p  =/=  q  /\  -.  p  .<_  W  /\  -.  q  .<_  W )  <-> 
( -.  p  .<_  W  /\  -.  q  .<_  W  /\  p  =/=  q
) )
13 df-ne 2795 . . . . . . . . . 10  |-  ( p  =/=  q  <->  -.  p  =  q )
1413anbi1i 731 . . . . . . . . 9  |-  ( ( p  =/=  q  /\  ( -.  p  .<_  W  /\  -.  q  .<_  W ) )  <->  ( -.  p  =  q  /\  ( -.  p  .<_  W  /\  -.  q  .<_  W ) ) )
1511, 12, 143bitr3i 290 . . . . . . . 8  |-  ( ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  p  =/=  q )  <->  ( -.  p  =  q  /\  ( -.  p  .<_  W  /\  -.  q  .<_  W ) ) )
1615imbi1i 339 . . . . . . 7  |-  ( ( ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  p  =/=  q
)  ->  ( (
p  .\/  ( F `  p ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) )  <-> 
( ( -.  p  =  q  /\  ( -.  p  .<_  W  /\  -.  q  .<_  W ) )  ->  ( (
p  .\/  ( F `  p ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) ) )
17 impexp 462 . . . . . . 7  |-  ( ( ( -.  p  =  q  /\  ( -.  p  .<_  W  /\  -.  q  .<_  W ) )  ->  ( (
p  .\/  ( F `  p ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) )  <-> 
( -.  p  =  q  ->  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  ( ( p 
.\/  ( F `  p ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) ) ) )
1816, 17bitri 264 . . . . . 6  |-  ( ( ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  p  =/=  q
)  ->  ( (
p  .\/  ( F `  p ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) )  <-> 
( -.  p  =  q  ->  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  ( ( p 
.\/  ( F `  p ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) ) ) )
19 id 22 . . . . . . . . . 10  |-  ( p  =  q  ->  p  =  q )
20 fveq2 6191 . . . . . . . . . 10  |-  ( p  =  q  ->  ( F `  p )  =  ( F `  q ) )
2119, 20oveq12d 6668 . . . . . . . . 9  |-  ( p  =  q  ->  (
p  .\/  ( F `  p ) )  =  ( q  .\/  ( F `  q )
) )
2221oveq1d 6665 . . . . . . . 8  |-  ( p  =  q  ->  (
( p  .\/  ( F `  p )
)  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) )
2322a1d 25 . . . . . . 7  |-  ( p  =  q  ->  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  (
( p  .\/  ( F `  p )
)  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) ) )
24 pm2.61 183 . . . . . . 7  |-  ( ( p  =  q  -> 
( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  (
( p  .\/  ( F `  p )
)  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) ) )  -> 
( ( -.  p  =  q  ->  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  ( ( p 
.\/  ( F `  p ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) ) )  ->  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  ( ( p 
.\/  ( F `  p ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) ) ) )
2523, 24ax-mp 5 . . . . . 6  |-  ( ( -.  p  =  q  ->  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  ( ( p 
.\/  ( F `  p ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) ) )  ->  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  ( ( p 
.\/  ( F `  p ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) ) )
2618, 25sylbi 207 . . . . 5  |-  ( ( ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  p  =/=  q
)  ->  ( (
p  .\/  ( F `  p ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) )  ->  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  ( ( p 
.\/  ( F `  p ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) ) )
2710, 26impbii 199 . . . 4  |-  ( ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  (
( p  .\/  ( F `  p )
)  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) )  <->  ( ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  p  =/=  q )  -> 
( ( p  .\/  ( F `  p ) )  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) ) )
28272ralbii 2981 . . 3  |-  ( A. p  e.  A  A. q  e.  A  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  (
( p  .\/  ( F `  p )
)  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) )  <->  A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  p  =/=  q )  -> 
( ( p  .\/  ( F `  p ) )  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) ) )
2928anbi2i 730 . 2  |-  ( ( F  e.  D  /\  A. p  e.  A  A. q  e.  A  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  (
( p  .\/  ( F `  p )
)  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) ) )  <->  ( F  e.  D  /\  A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  W  /\  -.  q  .<_  W  /\  p  =/=  q )  -> 
( ( p  .\/  ( F `  p ) )  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) ) ) )
308, 29syl6bb 276 1  |-  ( ( K  e.  B  /\  W  e.  H )  ->  ( F  e.  T  <->  ( F  e.  D  /\  A. p  e.  A  A. q  e.  A  (
( -.  p  .<_  W  /\  -.  q  .<_  W  /\  p  =/=  q
)  ->  ( (
p  .\/  ( F `  p ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   lecple 15948   joincjn 16944   meetcmee 16945   Atomscatm 34550   LHypclh 35270   LDilcldil 35386   LTrncltrn 35387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-ltrn 35391
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator