Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnu Structured version   Visualization version   Unicode version

Theorem ltrnu 35407
Description: Uniqueness property of a lattice translation value for atoms not under the fiducial co-atom  W. Similar to definition of translation in [Crawley] p. 111. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ltrnu.l  |-  .<_  =  ( le `  K )
ltrnu.j  |-  .\/  =  ( join `  K )
ltrnu.m  |-  ./\  =  ( meet `  K )
ltrnu.a  |-  A  =  ( Atoms `  K )
ltrnu.h  |-  H  =  ( LHyp `  K
)
ltrnu.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
ltrnu  |-  ( ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( ( P  .\/  ( F `  P ) )  ./\  W )  =  ( ( Q 
.\/  ( F `  Q ) )  ./\  W ) )

Proof of Theorem ltrnu
Dummy variables  q  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 an4 865 . . 3  |-  ( ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  <->  ( ( P  e.  A  /\  Q  e.  A )  /\  ( -.  P  .<_  W  /\  -.  Q  .<_  W ) ) )
2 simpr 477 . . . . 5  |-  ( ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )
)  ->  ( P  e.  A  /\  Q  e.  A ) )
3 simplr 792 . . . . . 6  |-  ( ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )
)  ->  F  e.  T )
4 ltrnu.l . . . . . . . . 9  |-  .<_  =  ( le `  K )
5 ltrnu.j . . . . . . . . 9  |-  .\/  =  ( join `  K )
6 ltrnu.m . . . . . . . . 9  |-  ./\  =  ( meet `  K )
7 ltrnu.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
8 ltrnu.h . . . . . . . . 9  |-  H  =  ( LHyp `  K
)
9 eqid 2622 . . . . . . . . 9  |-  ( (
LDil `  K ) `  W )  =  ( ( LDil `  K
) `  W )
10 ltrnu.t . . . . . . . . 9  |-  T  =  ( ( LTrn `  K
) `  W )
114, 5, 6, 7, 8, 9, 10isltrn 35405 . . . . . . . 8  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( F  e.  T  <->  ( F  e.  ( (
LDil `  K ) `  W )  /\  A. p  e.  A  A. q  e.  A  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  (
( p  .\/  ( F `  p )
)  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) ) ) ) )
1211ad2antrr 762 . . . . . . 7  |-  ( ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )
)  ->  ( F  e.  T  <->  ( F  e.  ( ( LDil `  K
) `  W )  /\  A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  (
( p  .\/  ( F `  p )
)  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) ) ) ) )
13 simpr 477 . . . . . . 7  |-  ( ( F  e.  ( (
LDil `  K ) `  W )  /\  A. p  e.  A  A. q  e.  A  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  (
( p  .\/  ( F `  p )
)  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) ) )  ->  A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  (
( p  .\/  ( F `  p )
)  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) ) )
1412, 13syl6bi 243 . . . . . 6  |-  ( ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )
)  ->  ( F  e.  T  ->  A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  ( ( p 
.\/  ( F `  p ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) ) ) )
153, 14mpd 15 . . . . 5  |-  ( ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )
)  ->  A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  ( ( p 
.\/  ( F `  p ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) ) )
16 breq1 4656 . . . . . . . . 9  |-  ( p  =  P  ->  (
p  .<_  W  <->  P  .<_  W ) )
1716notbid 308 . . . . . . . 8  |-  ( p  =  P  ->  ( -.  p  .<_  W  <->  -.  P  .<_  W ) )
1817anbi1d 741 . . . . . . 7  |-  ( p  =  P  ->  (
( -.  p  .<_  W  /\  -.  q  .<_  W )  <->  ( -.  P  .<_  W  /\  -.  q  .<_  W ) ) )
19 id 22 . . . . . . . . . 10  |-  ( p  =  P  ->  p  =  P )
20 fveq2 6191 . . . . . . . . . 10  |-  ( p  =  P  ->  ( F `  p )  =  ( F `  P ) )
2119, 20oveq12d 6668 . . . . . . . . 9  |-  ( p  =  P  ->  (
p  .\/  ( F `  p ) )  =  ( P  .\/  ( F `  P )
) )
2221oveq1d 6665 . . . . . . . 8  |-  ( p  =  P  ->  (
( p  .\/  ( F `  p )
)  ./\  W )  =  ( ( P 
.\/  ( F `  P ) )  ./\  W ) )
2322eqeq1d 2624 . . . . . . 7  |-  ( p  =  P  ->  (
( ( p  .\/  ( F `  p ) )  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W )  <->  ( ( P 
.\/  ( F `  P ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) ) )
2418, 23imbi12d 334 . . . . . 6  |-  ( p  =  P  ->  (
( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  (
( p  .\/  ( F `  p )
)  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) )  <->  ( ( -.  P  .<_  W  /\  -.  q  .<_  W )  ->  ( ( P 
.\/  ( F `  P ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) ) ) )
25 breq1 4656 . . . . . . . . 9  |-  ( q  =  Q  ->  (
q  .<_  W  <->  Q  .<_  W ) )
2625notbid 308 . . . . . . . 8  |-  ( q  =  Q  ->  ( -.  q  .<_  W  <->  -.  Q  .<_  W ) )
2726anbi2d 740 . . . . . . 7  |-  ( q  =  Q  ->  (
( -.  P  .<_  W  /\  -.  q  .<_  W )  <->  ( -.  P  .<_  W  /\  -.  Q  .<_  W ) ) )
28 id 22 . . . . . . . . . 10  |-  ( q  =  Q  ->  q  =  Q )
29 fveq2 6191 . . . . . . . . . 10  |-  ( q  =  Q  ->  ( F `  q )  =  ( F `  Q ) )
3028, 29oveq12d 6668 . . . . . . . . 9  |-  ( q  =  Q  ->  (
q  .\/  ( F `  q ) )  =  ( Q  .\/  ( F `  Q )
) )
3130oveq1d 6665 . . . . . . . 8  |-  ( q  =  Q  ->  (
( q  .\/  ( F `  q )
)  ./\  W )  =  ( ( Q 
.\/  ( F `  Q ) )  ./\  W ) )
3231eqeq2d 2632 . . . . . . 7  |-  ( q  =  Q  ->  (
( ( P  .\/  ( F `  P ) )  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W )  <->  ( ( P 
.\/  ( F `  P ) )  ./\  W )  =  ( ( Q  .\/  ( F `
 Q ) ) 
./\  W ) ) )
3327, 32imbi12d 334 . . . . . 6  |-  ( q  =  Q  ->  (
( ( -.  P  .<_  W  /\  -.  q  .<_  W )  ->  (
( P  .\/  ( F `  P )
)  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) )  <->  ( ( -.  P  .<_  W  /\  -.  Q  .<_  W )  ->  ( ( P 
.\/  ( F `  P ) )  ./\  W )  =  ( ( Q  .\/  ( F `
 Q ) ) 
./\  W ) ) ) )
3424, 33rspc2v 3322 . . . . 5  |-  ( ( P  e.  A  /\  Q  e.  A )  ->  ( A. p  e.  A  A. q  e.  A  ( ( -.  p  .<_  W  /\  -.  q  .<_  W )  ->  ( ( p 
.\/  ( F `  p ) )  ./\  W )  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) )  ->  ( ( -.  P  .<_  W  /\  -.  Q  .<_  W )  ->  ( ( P 
.\/  ( F `  P ) )  ./\  W )  =  ( ( Q  .\/  ( F `
 Q ) ) 
./\  W ) ) ) )
352, 15, 34sylc 65 . . . 4  |-  ( ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )
)  ->  ( ( -.  P  .<_  W  /\  -.  Q  .<_  W )  ->  ( ( P 
.\/  ( F `  P ) )  ./\  W )  =  ( ( Q  .\/  ( F `
 Q ) ) 
./\  W ) ) )
3635impr 649 . . 3  |-  ( ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  T )  /\  (
( P  e.  A  /\  Q  e.  A
)  /\  ( -.  P  .<_  W  /\  -.  Q  .<_  W ) ) )  ->  ( ( P  .\/  ( F `  P ) )  ./\  W )  =  ( ( Q  .\/  ( F `
 Q ) ) 
./\  W ) )
371, 36sylan2b 492 . 2  |-  ( ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( ( P 
.\/  ( F `  P ) )  ./\  W )  =  ( ( Q  .\/  ( F `
 Q ) ) 
./\  W ) )
38373impb 1260 1  |-  ( ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  -> 
( ( P  .\/  ( F `  P ) )  ./\  W )  =  ( ( Q 
.\/  ( F `  Q ) )  ./\  W ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   lecple 15948   joincjn 16944   meetcmee 16945   Atomscatm 34550   LHypclh 35270   LDilcldil 35386   LTrncltrn 35387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-ltrn 35391
This theorem is referenced by:  ltrncnv  35432  trlval2  35450  cdlemg14f  35941  cdlemg14g  35942
  Copyright terms: Public domain W3C validator