| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ismndd | Structured version Visualization version Unicode version | ||
| Description: Deduce a monoid from its properties. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| ismndd.b |
|
| ismndd.p |
|
| ismndd.c |
|
| ismndd.a |
|
| ismndd.z |
|
| ismndd.i |
|
| ismndd.j |
|
| Ref | Expression |
|---|---|
| ismndd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismndd.c |
. . . . . 6
| |
| 2 | 1 | 3expb 1266 |
. . . . 5
|
| 3 | simpll 790 |
. . . . . . 7
| |
| 4 | simplrl 800 |
. . . . . . 7
| |
| 5 | simplrr 801 |
. . . . . . 7
| |
| 6 | simpr 477 |
. . . . . . 7
| |
| 7 | ismndd.a |
. . . . . . 7
| |
| 8 | 3, 4, 5, 6, 7 | syl13anc 1328 |
. . . . . 6
|
| 9 | 8 | ralrimiva 2966 |
. . . . 5
|
| 10 | 2, 9 | jca 554 |
. . . 4
|
| 11 | 10 | ralrimivva 2971 |
. . 3
|
| 12 | ismndd.b |
. . . 4
| |
| 13 | ismndd.p |
. . . . . . . 8
| |
| 14 | 13 | oveqd 6667 |
. . . . . . 7
|
| 15 | 14, 12 | eleq12d 2695 |
. . . . . 6
|
| 16 | eqidd 2623 |
. . . . . . . . 9
| |
| 17 | 13, 14, 16 | oveq123d 6671 |
. . . . . . . 8
|
| 18 | eqidd 2623 |
. . . . . . . . 9
| |
| 19 | 13 | oveqd 6667 |
. . . . . . . . 9
|
| 20 | 13, 18, 19 | oveq123d 6671 |
. . . . . . . 8
|
| 21 | 17, 20 | eqeq12d 2637 |
. . . . . . 7
|
| 22 | 12, 21 | raleqbidv 3152 |
. . . . . 6
|
| 23 | 15, 22 | anbi12d 747 |
. . . . 5
|
| 24 | 12, 23 | raleqbidv 3152 |
. . . 4
|
| 25 | 12, 24 | raleqbidv 3152 |
. . 3
|
| 26 | 11, 25 | mpbid 222 |
. 2
|
| 27 | ismndd.z |
. . . 4
| |
| 28 | 27, 12 | eleqtrd 2703 |
. . 3
|
| 29 | 12 | eleq2d 2687 |
. . . . . 6
|
| 30 | 29 | biimpar 502 |
. . . . 5
|
| 31 | 13 | adantr 481 |
. . . . . . . 8
|
| 32 | 31 | oveqd 6667 |
. . . . . . 7
|
| 33 | ismndd.i |
. . . . . . 7
| |
| 34 | 32, 33 | eqtr3d 2658 |
. . . . . 6
|
| 35 | 31 | oveqd 6667 |
. . . . . . 7
|
| 36 | ismndd.j |
. . . . . . 7
| |
| 37 | 35, 36 | eqtr3d 2658 |
. . . . . 6
|
| 38 | 34, 37 | jca 554 |
. . . . 5
|
| 39 | 30, 38 | syldan 487 |
. . . 4
|
| 40 | 39 | ralrimiva 2966 |
. . 3
|
| 41 | oveq1 6657 |
. . . . . . 7
| |
| 42 | 41 | eqeq1d 2624 |
. . . . . 6
|
| 43 | oveq2 6658 |
. . . . . . 7
| |
| 44 | 43 | eqeq1d 2624 |
. . . . . 6
|
| 45 | 42, 44 | anbi12d 747 |
. . . . 5
|
| 46 | 45 | ralbidv 2986 |
. . . 4
|
| 47 | 46 | rspcev 3309 |
. . 3
|
| 48 | 28, 40, 47 | syl2anc 693 |
. 2
|
| 49 | eqid 2622 |
. . 3
| |
| 50 | eqid 2622 |
. . 3
| |
| 51 | 49, 50 | ismnd 17297 |
. 2
|
| 52 | 26, 48, 51 | sylanbrc 698 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 ax-pow 4843 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-mgm 17242 df-sgrp 17284 df-mnd 17295 |
| This theorem is referenced by: issubmnd 17318 prdsmndd 17323 imasmnd2 17327 frmdmnd 17396 isgrpde 17443 oppgmnd 17784 isringd 18585 iscrngd 18586 xrsmcmn 19769 xrs1mnd 19784 |
| Copyright terms: Public domain | W3C validator |