Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismndo1 Structured version   Visualization version   Unicode version

Theorem ismndo1 33672
Description: The predicate "is a monoid". (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
ismndo1.1  |-  X  =  dom  dom  G
Assertion
Ref Expression
ismndo1  |-  ( G  e.  A  ->  ( G  e. MndOp  <->  ( G :
( X  X.  X
) --> X  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  (
( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. x  e.  X  A. y  e.  X  (
( x G y )  =  y  /\  ( y G x )  =  y ) ) ) )
Distinct variable groups:    x, G, y, z    x, X, y, z
Allowed substitution hints:    A( x, y, z)

Proof of Theorem ismndo1
StepHypRef Expression
1 ismndo1.1 . . 3  |-  X  =  dom  dom  G
21ismndo 33671 . 2  |-  ( G  e.  A  ->  ( G  e. MndOp  <->  ( G  e.  SemiGrp 
/\  E. x  e.  X  A. y  e.  X  ( ( x G y )  =  y  /\  ( y G x )  =  y ) ) ) )
31smgrpmgm 33663 . . . . 5  |-  ( G  e.  SemiGrp  ->  G : ( X  X.  X ) --> X )
43ad2antrl 764 . . . 4  |-  ( ( G  e.  A  /\  ( G  e.  SemiGrp  /\  E. x  e.  X  A. y  e.  X  (
( x G y )  =  y  /\  ( y G x )  =  y ) ) )  ->  G : ( X  X.  X ) --> X )
51smgrpassOLD 33664 . . . . 5  |-  ( G  e.  SemiGrp  ->  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( ( x G y ) G z )  =  ( x G ( y G z ) ) )
65ad2antrl 764 . . . 4  |-  ( ( G  e.  A  /\  ( G  e.  SemiGrp  /\  E. x  e.  X  A. y  e.  X  (
( x G y )  =  y  /\  ( y G x )  =  y ) ) )  ->  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( (
x G y ) G z )  =  ( x G ( y G z ) ) )
7 simprr 796 . . . 4  |-  ( ( G  e.  A  /\  ( G  e.  SemiGrp  /\  E. x  e.  X  A. y  e.  X  (
( x G y )  =  y  /\  ( y G x )  =  y ) ) )  ->  E. x  e.  X  A. y  e.  X  ( (
x G y )  =  y  /\  (
y G x )  =  y ) )
84, 6, 73jca 1242 . . 3  |-  ( ( G  e.  A  /\  ( G  e.  SemiGrp  /\  E. x  e.  X  A. y  e.  X  (
( x G y )  =  y  /\  ( y G x )  =  y ) ) )  ->  ( G : ( X  X.  X ) --> X  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  (
( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. x  e.  X  A. y  e.  X  (
( x G y )  =  y  /\  ( y G x )  =  y ) ) )
9 3simpa 1058 . . . . . 6  |-  ( ( G : ( X  X.  X ) --> X  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( ( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. x  e.  X  A. y  e.  X  ( ( x G y )  =  y  /\  ( y G x )  =  y ) )  -> 
( G : ( X  X.  X ) --> X  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( (
x G y ) G z )  =  ( x G ( y G z ) ) ) )
101issmgrpOLD 33662 . . . . . 6  |-  ( G  e.  A  ->  ( G  e.  SemiGrp  <->  ( G : ( X  X.  X ) --> X  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  (
( x G y ) G z )  =  ( x G ( y G z ) ) ) ) )
119, 10syl5ibr 236 . . . . 5  |-  ( G  e.  A  ->  (
( G : ( X  X.  X ) --> X  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( (
x G y ) G z )  =  ( x G ( y G z ) )  /\  E. x  e.  X  A. y  e.  X  ( (
x G y )  =  y  /\  (
y G x )  =  y ) )  ->  G  e.  SemiGrp ) )
1211imp 445 . . . 4  |-  ( ( G  e.  A  /\  ( G : ( X  X.  X ) --> X  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( ( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. x  e.  X  A. y  e.  X  ( ( x G y )  =  y  /\  ( y G x )  =  y ) ) )  ->  G  e.  SemiGrp )
13 simpr3 1069 . . . 4  |-  ( ( G  e.  A  /\  ( G : ( X  X.  X ) --> X  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( ( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. x  e.  X  A. y  e.  X  ( ( x G y )  =  y  /\  ( y G x )  =  y ) ) )  ->  E. x  e.  X  A. y  e.  X  ( ( x G y )  =  y  /\  ( y G x )  =  y ) )
1412, 13jca 554 . . 3  |-  ( ( G  e.  A  /\  ( G : ( X  X.  X ) --> X  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( ( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. x  e.  X  A. y  e.  X  ( ( x G y )  =  y  /\  ( y G x )  =  y ) ) )  ->  ( G  e.  SemiGrp 
/\  E. x  e.  X  A. y  e.  X  ( ( x G y )  =  y  /\  ( y G x )  =  y ) ) )
158, 14impbida 877 . 2  |-  ( G  e.  A  ->  (
( G  e.  SemiGrp  /\  E. x  e.  X  A. y  e.  X  (
( x G y )  =  y  /\  ( y G x )  =  y ) )  <->  ( G :
( X  X.  X
) --> X  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  (
( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. x  e.  X  A. y  e.  X  (
( x G y )  =  y  /\  ( y G x )  =  y ) ) ) )
162, 15bitrd 268 1  |-  ( G  e.  A  ->  ( G  e. MndOp  <->  ( G :
( X  X.  X
) --> X  /\  A. x  e.  X  A. y  e.  X  A. z  e.  X  (
( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. x  e.  X  A. y  e.  X  (
( x G y )  =  y  /\  ( y G x )  =  y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    X. cxp 5112   dom cdm 5114   -->wf 5884  (class class class)co 6650   SemiGrpcsem 33659  MndOpcmndo 33665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-ass 33642  df-exid 33644  df-mgmOLD 33648  df-sgrOLD 33660  df-mndo 33666
This theorem is referenced by:  ismndo2  33673  rngomndo  33734
  Copyright terms: Public domain W3C validator