| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ismre | Structured version Visualization version Unicode version | ||
| Description: Property of being a Moore collection on some base set. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| Ref | Expression |
|---|---|
| ismre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvex 6221 |
. 2
| |
| 2 | elex 3212 |
. . 3
| |
| 3 | 2 | 3ad2ant2 1083 |
. 2
|
| 4 | pweq 4161 |
. . . . . . 7
| |
| 5 | 4 | pweqd 4163 |
. . . . . 6
|
| 6 | eleq1 2689 |
. . . . . . 7
| |
| 7 | 6 | anbi1d 741 |
. . . . . 6
|
| 8 | 5, 7 | rabeqbidv 3195 |
. . . . 5
|
| 9 | df-mre 16246 |
. . . . 5
| |
| 10 | vpwex 4849 |
. . . . . . 7
| |
| 11 | 10 | pwex 4848 |
. . . . . 6
|
| 12 | 11 | rabex 4813 |
. . . . 5
|
| 13 | 8, 9, 12 | fvmpt3i 6287 |
. . . 4
|
| 14 | 13 | eleq2d 2687 |
. . 3
|
| 15 | eleq2 2690 |
. . . . . 6
| |
| 16 | pweq 4161 |
. . . . . . 7
| |
| 17 | eleq2 2690 |
. . . . . . . 8
| |
| 18 | 17 | imbi2d 330 |
. . . . . . 7
|
| 19 | 16, 18 | raleqbidv 3152 |
. . . . . 6
|
| 20 | 15, 19 | anbi12d 747 |
. . . . 5
|
| 21 | 20 | elrab 3363 |
. . . 4
|
| 22 | 21 | a1i 11 |
. . 3
|
| 23 | pwexg 4850 |
. . . . . 6
| |
| 24 | elpw2g 4827 |
. . . . . 6
| |
| 25 | 23, 24 | syl 17 |
. . . . 5
|
| 26 | 25 | anbi1d 741 |
. . . 4
|
| 27 | 3anass 1042 |
. . . 4
| |
| 28 | 26, 27 | syl6bbr 278 |
. . 3
|
| 29 | 14, 22, 28 | 3bitrd 294 |
. 2
|
| 30 | 1, 3, 29 | pm5.21nii 368 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-mre 16246 |
| This theorem is referenced by: mresspw 16252 mre1cl 16254 mreintcl 16255 ismred 16262 |
| Copyright terms: Public domain | W3C validator |