MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mresspw Structured version   Visualization version   Unicode version

Theorem mresspw 16252
Description: A Moore collection is a subset of the power of the base set; each closed subset of the system is actually a subset of the base. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
mresspw  |-  ( C  e.  (Moore `  X
)  ->  C  C_  ~P X )

Proof of Theorem mresspw
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 ismre 16250 . 2  |-  ( C  e.  (Moore `  X
)  <->  ( C  C_  ~P X  /\  X  e.  C  /\  A. s  e.  ~P  C ( s  =/=  (/)  ->  |^| s  e.  C ) ) )
21simp1bi 1076 1  |-  ( C  e.  (Moore `  X
)  ->  C  C_  ~P X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1990    =/= wne 2794   A.wral 2912    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   |^|cint 4475   ` cfv 5888  Moorecmre 16242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-mre 16246
This theorem is referenced by:  mress  16253  mrerintcl  16257  mreuni  16260  mremre  16264  isacs2  16314  mreacs  16319  isacs3lem  17166  dmdprdd  18398  dprdfeq0  18421  dprdss  18428  dprdz  18429  subgdmdprd  18433  subgdprd  18434  dprd2dlem1  18440  dprd2da  18441  dmdprdsplit2lem  18444  mretopd  20896  ismrc  37264
  Copyright terms: Public domain W3C validator