MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnmnd Structured version   Visualization version   Unicode version

Theorem isnmnd 17298
Description: A condition for a structure not to be a monoid: every element of the base set is not a left identity for at least one element of the base set. (Contributed by AV, 4-Feb-2020.)
Hypotheses
Ref Expression
isnmnd.b  |-  B  =  ( Base `  M
)
isnmnd.o  |-  .o.  =  ( +g  `  M )
Assertion
Ref Expression
isnmnd  |-  ( A. z  e.  B  E. x  e.  B  (
z  .o.  x )  =/=  x  ->  M  e/  Mnd )
Distinct variable groups:    x, B, z    x, M, z    x,  .o. , z

Proof of Theorem isnmnd
StepHypRef Expression
1 neneq 2800 . . . . . . . 8  |-  ( ( z  .o.  x )  =/=  x  ->  -.  ( z  .o.  x
)  =  x )
21intnanrd 963 . . . . . . 7  |-  ( ( z  .o.  x )  =/=  x  ->  -.  ( ( z  .o.  x )  =  x  /\  ( x  .o.  z )  =  x ) )
32reximi 3011 . . . . . 6  |-  ( E. x  e.  B  ( z  .o.  x )  =/=  x  ->  E. x  e.  B  -.  (
( z  .o.  x
)  =  x  /\  ( x  .o.  z
)  =  x ) )
43ralimi 2952 . . . . 5  |-  ( A. z  e.  B  E. x  e.  B  (
z  .o.  x )  =/=  x  ->  A. z  e.  B  E. x  e.  B  -.  (
( z  .o.  x
)  =  x  /\  ( x  .o.  z
)  =  x ) )
5 rexnal 2995 . . . . . . 7  |-  ( E. x  e.  B  -.  ( ( z  .o.  x )  =  x  /\  ( x  .o.  z )  =  x )  <->  -.  A. x  e.  B  ( (
z  .o.  x )  =  x  /\  (
x  .o.  z )  =  x ) )
65ralbii 2980 . . . . . 6  |-  ( A. z  e.  B  E. x  e.  B  -.  ( ( z  .o.  x )  =  x  /\  ( x  .o.  z )  =  x )  <->  A. z  e.  B  -.  A. x  e.  B  ( ( z  .o.  x )  =  x  /\  ( x  .o.  z )  =  x ) )
7 ralnex 2992 . . . . . 6  |-  ( A. z  e.  B  -.  A. x  e.  B  ( ( z  .o.  x
)  =  x  /\  ( x  .o.  z
)  =  x )  <->  -.  E. z  e.  B  A. x  e.  B  ( ( z  .o.  x )  =  x  /\  ( x  .o.  z )  =  x ) )
86, 7bitri 264 . . . . 5  |-  ( A. z  e.  B  E. x  e.  B  -.  ( ( z  .o.  x )  =  x  /\  ( x  .o.  z )  =  x )  <->  -.  E. z  e.  B  A. x  e.  B  ( (
z  .o.  x )  =  x  /\  (
x  .o.  z )  =  x ) )
94, 8sylib 208 . . . 4  |-  ( A. z  e.  B  E. x  e.  B  (
z  .o.  x )  =/=  x  ->  -.  E. z  e.  B  A. x  e.  B  ( (
z  .o.  x )  =  x  /\  (
x  .o.  z )  =  x ) )
109intnand 962 . . 3  |-  ( A. z  e.  B  E. x  e.  B  (
z  .o.  x )  =/=  x  ->  -.  ( M  e. SGrp  /\  E. z  e.  B  A. x  e.  B  ( (
z  .o.  x )  =  x  /\  (
x  .o.  z )  =  x ) ) )
11 isnmnd.b . . . 4  |-  B  =  ( Base `  M
)
12 isnmnd.o . . . 4  |-  .o.  =  ( +g  `  M )
1311, 12ismnddef 17296 . . 3  |-  ( M  e.  Mnd  <->  ( M  e. SGrp  /\  E. z  e.  B  A. x  e.  B  ( ( z  .o.  x )  =  x  /\  ( x  .o.  z )  =  x ) ) )
1410, 13sylnibr 319 . 2  |-  ( A. z  e.  B  E. x  e.  B  (
z  .o.  x )  =/=  x  ->  -.  M  e.  Mnd )
15 df-nel 2898 . 2  |-  ( M  e/  Mnd  <->  -.  M  e.  Mnd )
1614, 15sylibr 224 1  |-  ( A. z  e.  B  E. x  e.  B  (
z  .o.  x )  =/=  x  ->  M  e/  Mnd )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    e/ wnel 2897   A.wral 2912   E.wrex 2913   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941  SGrpcsgrp 17283   Mndcmnd 17294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-mnd 17295
This theorem is referenced by:  sgrp2nmndlem5  17416  copisnmnd  41809  nnsgrpnmnd  41818  2zrngnring  41952
  Copyright terms: Public domain W3C validator