MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgrp2nmndlem5 Structured version   Visualization version   Unicode version

Theorem sgrp2nmndlem5 17416
Description: Lemma 5 for sgrp2nmnd 17417: M is not a monoid. (Contributed by AV, 29-Jan-2020.)
Hypotheses
Ref Expression
mgm2nsgrp.s  |-  S  =  { A ,  B }
mgm2nsgrp.b  |-  ( Base `  M )  =  S
sgrp2nmnd.o  |-  ( +g  `  M )  =  ( x  e.  S , 
y  e.  S  |->  if ( x  =  A ,  A ,  B
) )
Assertion
Ref Expression
sgrp2nmndlem5  |-  ( (
# `  S )  =  2  ->  M  e/  Mnd )
Distinct variable groups:    x, S, y    x, A, y    x, B, y    x, M, y

Proof of Theorem sgrp2nmndlem5
StepHypRef Expression
1 mgm2nsgrp.s . . 3  |-  S  =  { A ,  B }
21hashprdifel 13186 . 2  |-  ( (
# `  S )  =  2  ->  ( A  e.  S  /\  B  e.  S  /\  A  =/=  B ) )
3 mgm2nsgrp.b . . . . . . . 8  |-  ( Base `  M )  =  S
4 sgrp2nmnd.o . . . . . . . 8  |-  ( +g  `  M )  =  ( x  e.  S , 
y  e.  S  |->  if ( x  =  A ,  A ,  B
) )
5 eqid 2622 . . . . . . . 8  |-  ( +g  `  M )  =  ( +g  `  M )
61, 3, 4, 5sgrp2nmndlem2 17411 . . . . . . 7  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ( A ( +g  `  M ) B )  =  A )
763adant3 1081 . . . . . 6  |-  ( ( A  e.  S  /\  B  e.  S  /\  A  =/=  B )  -> 
( A ( +g  `  M ) B )  =  A )
8 simp3 1063 . . . . . 6  |-  ( ( A  e.  S  /\  B  e.  S  /\  A  =/=  B )  ->  A  =/=  B )
97, 8eqnetrd 2861 . . . . 5  |-  ( ( A  e.  S  /\  B  e.  S  /\  A  =/=  B )  -> 
( A ( +g  `  M ) B )  =/=  B )
109olcd 408 . . . 4  |-  ( ( A  e.  S  /\  B  e.  S  /\  A  =/=  B )  -> 
( ( A ( +g  `  M ) A )  =/=  A  \/  ( A ( +g  `  M ) B )  =/=  B ) )
11 oveq2 6658 . . . . . . 7  |-  ( y  =  A  ->  ( A ( +g  `  M
) y )  =  ( A ( +g  `  M ) A ) )
12 id 22 . . . . . . 7  |-  ( y  =  A  ->  y  =  A )
1311, 12neeq12d 2855 . . . . . 6  |-  ( y  =  A  ->  (
( A ( +g  `  M ) y )  =/=  y  <->  ( A
( +g  `  M ) A )  =/=  A
) )
14 oveq2 6658 . . . . . . 7  |-  ( y  =  B  ->  ( A ( +g  `  M
) y )  =  ( A ( +g  `  M ) B ) )
15 id 22 . . . . . . 7  |-  ( y  =  B  ->  y  =  B )
1614, 15neeq12d 2855 . . . . . 6  |-  ( y  =  B  ->  (
( A ( +g  `  M ) y )  =/=  y  <->  ( A
( +g  `  M ) B )  =/=  B
) )
1713, 16rexprg 4235 . . . . 5  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ( E. y  e. 
{ A ,  B }  ( A ( +g  `  M ) y )  =/=  y  <->  ( ( A ( +g  `  M ) A )  =/=  A  \/  ( A ( +g  `  M
) B )  =/= 
B ) ) )
18173adant3 1081 . . . 4  |-  ( ( A  e.  S  /\  B  e.  S  /\  A  =/=  B )  -> 
( E. y  e. 
{ A ,  B }  ( A ( +g  `  M ) y )  =/=  y  <->  ( ( A ( +g  `  M ) A )  =/=  A  \/  ( A ( +g  `  M
) B )  =/= 
B ) ) )
1910, 18mpbird 247 . . 3  |-  ( ( A  e.  S  /\  B  e.  S  /\  A  =/=  B )  ->  E. y  e.  { A ,  B }  ( A ( +g  `  M
) y )  =/=  y )
201, 3, 4, 5sgrp2nmndlem3 17412 . . . . . . 7  |-  ( ( A  e.  S  /\  B  e.  S  /\  A  =/=  B )  -> 
( B ( +g  `  M ) A )  =  B )
21 necom 2847 . . . . . . . . . . 11  |-  ( A  =/=  B  <->  B  =/=  A )
22 df-ne 2795 . . . . . . . . . . 11  |-  ( B  =/=  A  <->  -.  B  =  A )
2321, 22sylbb 209 . . . . . . . . . 10  |-  ( A  =/=  B  ->  -.  B  =  A )
24233ad2ant3 1084 . . . . . . . . 9  |-  ( ( A  e.  S  /\  B  e.  S  /\  A  =/=  B )  ->  -.  B  =  A
)
2524adantr 481 . . . . . . . 8  |-  ( ( ( A  e.  S  /\  B  e.  S  /\  A  =/=  B
)  /\  ( B
( +g  `  M ) A )  =  B )  ->  -.  B  =  A )
26 eqeq1 2626 . . . . . . . . 9  |-  ( ( B ( +g  `  M
) A )  =  B  ->  ( ( B ( +g  `  M
) A )  =  A  <->  B  =  A
) )
2726adantl 482 . . . . . . . 8  |-  ( ( ( A  e.  S  /\  B  e.  S  /\  A  =/=  B
)  /\  ( B
( +g  `  M ) A )  =  B )  ->  ( ( B ( +g  `  M
) A )  =  A  <->  B  =  A
) )
2825, 27mtbird 315 . . . . . . 7  |-  ( ( ( A  e.  S  /\  B  e.  S  /\  A  =/=  B
)  /\  ( B
( +g  `  M ) A )  =  B )  ->  -.  ( B ( +g  `  M
) A )  =  A )
2920, 28mpdan 702 . . . . . 6  |-  ( ( A  e.  S  /\  B  e.  S  /\  A  =/=  B )  ->  -.  ( B ( +g  `  M ) A )  =  A )
3029neqned 2801 . . . . 5  |-  ( ( A  e.  S  /\  B  e.  S  /\  A  =/=  B )  -> 
( B ( +g  `  M ) A )  =/=  A )
3130orcd 407 . . . 4  |-  ( ( A  e.  S  /\  B  e.  S  /\  A  =/=  B )  -> 
( ( B ( +g  `  M ) A )  =/=  A  \/  ( B ( +g  `  M ) B )  =/=  B ) )
32 oveq2 6658 . . . . . . 7  |-  ( y  =  A  ->  ( B ( +g  `  M
) y )  =  ( B ( +g  `  M ) A ) )
3332, 12neeq12d 2855 . . . . . 6  |-  ( y  =  A  ->  (
( B ( +g  `  M ) y )  =/=  y  <->  ( B
( +g  `  M ) A )  =/=  A
) )
34 oveq2 6658 . . . . . . 7  |-  ( y  =  B  ->  ( B ( +g  `  M
) y )  =  ( B ( +g  `  M ) B ) )
3534, 15neeq12d 2855 . . . . . 6  |-  ( y  =  B  ->  (
( B ( +g  `  M ) y )  =/=  y  <->  ( B
( +g  `  M ) B )  =/=  B
) )
3633, 35rexprg 4235 . . . . 5  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ( E. y  e. 
{ A ,  B }  ( B ( +g  `  M ) y )  =/=  y  <->  ( ( B ( +g  `  M ) A )  =/=  A  \/  ( B ( +g  `  M
) B )  =/= 
B ) ) )
37363adant3 1081 . . . 4  |-  ( ( A  e.  S  /\  B  e.  S  /\  A  =/=  B )  -> 
( E. y  e. 
{ A ,  B }  ( B ( +g  `  M ) y )  =/=  y  <->  ( ( B ( +g  `  M ) A )  =/=  A  \/  ( B ( +g  `  M
) B )  =/= 
B ) ) )
3831, 37mpbird 247 . . 3  |-  ( ( A  e.  S  /\  B  e.  S  /\  A  =/=  B )  ->  E. y  e.  { A ,  B }  ( B ( +g  `  M
) y )  =/=  y )
39 oveq1 6657 . . . . . . 7  |-  ( x  =  A  ->  (
x ( +g  `  M
) y )  =  ( A ( +g  `  M ) y ) )
4039neeq1d 2853 . . . . . 6  |-  ( x  =  A  ->  (
( x ( +g  `  M ) y )  =/=  y  <->  ( A
( +g  `  M ) y )  =/=  y
) )
4140rexbidv 3052 . . . . 5  |-  ( x  =  A  ->  ( E. y  e.  { A ,  B }  ( x ( +g  `  M
) y )  =/=  y  <->  E. y  e.  { A ,  B } 
( A ( +g  `  M ) y )  =/=  y ) )
42 oveq1 6657 . . . . . . 7  |-  ( x  =  B  ->  (
x ( +g  `  M
) y )  =  ( B ( +g  `  M ) y ) )
4342neeq1d 2853 . . . . . 6  |-  ( x  =  B  ->  (
( x ( +g  `  M ) y )  =/=  y  <->  ( B
( +g  `  M ) y )  =/=  y
) )
4443rexbidv 3052 . . . . 5  |-  ( x  =  B  ->  ( E. y  e.  { A ,  B }  ( x ( +g  `  M
) y )  =/=  y  <->  E. y  e.  { A ,  B } 
( B ( +g  `  M ) y )  =/=  y ) )
4541, 44ralprg 4234 . . . 4  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ( A. x  e. 
{ A ,  B } E. y  e.  { A ,  B } 
( x ( +g  `  M ) y )  =/=  y  <->  ( E. y  e.  { A ,  B }  ( A ( +g  `  M
) y )  =/=  y  /\  E. y  e.  { A ,  B }  ( B ( +g  `  M ) y )  =/=  y
) ) )
46453adant3 1081 . . 3  |-  ( ( A  e.  S  /\  B  e.  S  /\  A  =/=  B )  -> 
( A. x  e. 
{ A ,  B } E. y  e.  { A ,  B } 
( x ( +g  `  M ) y )  =/=  y  <->  ( E. y  e.  { A ,  B }  ( A ( +g  `  M
) y )  =/=  y  /\  E. y  e.  { A ,  B }  ( B ( +g  `  M ) y )  =/=  y
) ) )
4719, 38, 46mpbir2and 957 . 2  |-  ( ( A  e.  S  /\  B  e.  S  /\  A  =/=  B )  ->  A. x  e.  { A ,  B } E. y  e.  { A ,  B }  ( x ( +g  `  M ) y )  =/=  y
)
483, 1eqtr2i 2645 . . 3  |-  { A ,  B }  =  (
Base `  M )
4948, 5isnmnd 17298 . 2  |-  ( A. x  e.  { A ,  B } E. y  e.  { A ,  B }  ( x ( +g  `  M ) y )  =/=  y  ->  M  e/  Mnd )
502, 47, 493syl 18 1  |-  ( (
# `  S )  =  2  ->  M  e/  Mnd )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    e/ wnel 2897   A.wral 2912   E.wrex 2913   ifcif 4086   {cpr 4179   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   2c2 11070   #chash 13117   Basecbs 15857   +g cplusg 15941   Mndcmnd 17294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-mnd 17295
This theorem is referenced by:  sgrp2nmnd  17417  sgrpnmndex  17419
  Copyright terms: Public domain W3C validator