| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intnand | Structured version Visualization version Unicode version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
| Ref | Expression |
|---|---|
| intnand.1 |
|
| Ref | Expression |
|---|---|
| intnand |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnand.1 |
. 2
| |
| 2 | simpr 477 |
. 2
| |
| 3 | 1, 2 | nsyl 135 |
1
|
| Copyright terms: Public domain | W3C validator |