| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isnrm | Structured version Visualization version Unicode version | ||
| Description: The predicate "is a normal space." Much like the case for regular spaces, normal does not imply Hausdorff or even regular. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 24-Aug-2015.) |
| Ref | Expression |
|---|---|
| isnrm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6191 |
. . . . 5
| |
| 2 | 1 | ineq1d 3813 |
. . . 4
|
| 3 | fveq2 6191 |
. . . . . . . 8
| |
| 4 | 3 | fveq1d 6193 |
. . . . . . 7
|
| 5 | 4 | sseq1d 3632 |
. . . . . 6
|
| 6 | 5 | anbi2d 740 |
. . . . 5
|
| 7 | 6 | rexeqbi1dv 3147 |
. . . 4
|
| 8 | 2, 7 | raleqbidv 3152 |
. . 3
|
| 9 | 8 | raleqbi1dv 3146 |
. 2
|
| 10 | df-nrm 21121 |
. 2
| |
| 11 | 9, 10 | elrab2 3366 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-nrm 21121 |
| This theorem is referenced by: nrmtop 21140 nrmsep3 21159 isnrm2 21162 kqnrmlem1 21546 kqnrmlem2 21547 nrmhmph 21597 |
| Copyright terms: Public domain | W3C validator |