MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnrm Structured version   Visualization version   Unicode version

Theorem isnrm 21139
Description: The predicate "is a normal space." Much like the case for regular spaces, normal does not imply Hausdorff or even regular. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
isnrm  |-  ( J  e.  Nrm  <->  ( J  e.  Top  /\  A. x  e.  J  A. y  e.  ( ( Clsd `  J
)  i^i  ~P x
) E. z  e.  J  ( y  C_  z  /\  ( ( cls `  J ) `  z
)  C_  x )
) )
Distinct variable group:    x, y, z, J

Proof of Theorem isnrm
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . 5  |-  ( j  =  J  ->  ( Clsd `  j )  =  ( Clsd `  J
) )
21ineq1d 3813 . . . 4  |-  ( j  =  J  ->  (
( Clsd `  j )  i^i  ~P x )  =  ( ( Clsd `  J
)  i^i  ~P x
) )
3 fveq2 6191 . . . . . . . 8  |-  ( j  =  J  ->  ( cls `  j )  =  ( cls `  J
) )
43fveq1d 6193 . . . . . . 7  |-  ( j  =  J  ->  (
( cls `  j
) `  z )  =  ( ( cls `  J ) `  z
) )
54sseq1d 3632 . . . . . 6  |-  ( j  =  J  ->  (
( ( cls `  j
) `  z )  C_  x  <->  ( ( cls `  J ) `  z
)  C_  x )
)
65anbi2d 740 . . . . 5  |-  ( j  =  J  ->  (
( y  C_  z  /\  ( ( cls `  j
) `  z )  C_  x )  <->  ( y  C_  z  /\  ( ( cls `  J ) `
 z )  C_  x ) ) )
76rexeqbi1dv 3147 . . . 4  |-  ( j  =  J  ->  ( E. z  e.  j 
( y  C_  z  /\  ( ( cls `  j
) `  z )  C_  x )  <->  E. z  e.  J  ( y  C_  z  /\  ( ( cls `  J ) `
 z )  C_  x ) ) )
82, 7raleqbidv 3152 . . 3  |-  ( j  =  J  ->  ( A. y  e.  (
( Clsd `  j )  i^i  ~P x ) E. z  e.  j  ( y  C_  z  /\  ( ( cls `  j
) `  z )  C_  x )  <->  A. y  e.  ( ( Clsd `  J
)  i^i  ~P x
) E. z  e.  J  ( y  C_  z  /\  ( ( cls `  J ) `  z
)  C_  x )
) )
98raleqbi1dv 3146 . 2  |-  ( j  =  J  ->  ( A. x  e.  j  A. y  e.  (
( Clsd `  j )  i^i  ~P x ) E. z  e.  j  ( y  C_  z  /\  ( ( cls `  j
) `  z )  C_  x )  <->  A. x  e.  J  A. y  e.  ( ( Clsd `  J
)  i^i  ~P x
) E. z  e.  J  ( y  C_  z  /\  ( ( cls `  J ) `  z
)  C_  x )
) )
10 df-nrm 21121 . 2  |-  Nrm  =  { j  e.  Top  | 
A. x  e.  j 
A. y  e.  ( ( Clsd `  j
)  i^i  ~P x
) E. z  e.  j  ( y  C_  z  /\  ( ( cls `  j ) `  z
)  C_  x ) }
119, 10elrab2 3366 1  |-  ( J  e.  Nrm  <->  ( J  e.  Top  /\  A. x  e.  J  A. y  e.  ( ( Clsd `  J
)  i^i  ~P x
) E. z  e.  J  ( y  C_  z  /\  ( ( cls `  J ) `  z
)  C_  x )
) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   ` cfv 5888   Topctop 20698   Clsdccld 20820   clsccl 20822   Nrmcnrm 21114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-nrm 21121
This theorem is referenced by:  nrmtop  21140  nrmsep3  21159  isnrm2  21162  kqnrmlem1  21546  kqnrmlem2  21547  nrmhmph  21597
  Copyright terms: Public domain W3C validator