MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqnrmlem1 Structured version   Visualization version   Unicode version

Theorem kqnrmlem1 21546
Description: A Kolmogorov quotient of a normal space is normal. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2  |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )
Assertion
Ref Expression
kqnrmlem1  |-  ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  ->  (KQ `  J )  e.  Nrm )
Distinct variable groups:    x, y, J    x, X, y
Allowed substitution hints:    F( x, y)

Proof of Theorem kqnrmlem1
Dummy variables  m  w  z  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . 5  |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )
21kqtopon 21530 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  (KQ `  J
)  e.  (TopOn `  ran  F ) )
32adantr 481 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  ->  (KQ `  J )  e.  (TopOn `  ran  F ) )
4 topontop 20718 . . 3  |-  ( (KQ
`  J )  e.  (TopOn `  ran  F )  ->  (KQ `  J
)  e.  Top )
53, 4syl 17 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  ->  (KQ `  J )  e.  Top )
6 simplr 792 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  (
z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  ->  J  e.  Nrm )
71kqid 21531 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  F  e.  ( J  Cn  (KQ `  J ) ) )
87ad2antrr 762 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  (
z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  ->  F  e.  ( J  Cn  (KQ `  J ) ) )
9 simprl 794 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  (
z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  ->  z  e.  (KQ `  J ) )
10 cnima 21069 . . . . . 6  |-  ( ( F  e.  ( J  Cn  (KQ `  J
) )  /\  z  e.  (KQ `  J ) )  ->  ( `' F " z )  e.  J )
118, 9, 10syl2anc 693 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  (
z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  ->  ( `' F " z )  e.  J )
12 inss1 3833 . . . . . . 7  |-  ( (
Clsd `  (KQ `  J
) )  i^i  ~P z )  C_  ( Clsd `  (KQ `  J
) )
13 simprr 796 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  (
z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  ->  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) )
1412, 13sseldi 3601 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  (
z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  ->  w  e.  ( Clsd `  (KQ `  J
) ) )
15 cnclima 21072 . . . . . 6  |-  ( ( F  e.  ( J  Cn  (KQ `  J
) )  /\  w  e.  ( Clsd `  (KQ `  J ) ) )  ->  ( `' F " w )  e.  (
Clsd `  J )
)
168, 14, 15syl2anc 693 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  (
z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  ->  ( `' F " w )  e.  ( Clsd `  J
) )
17 inss2 3834 . . . . . . 7  |-  ( (
Clsd `  (KQ `  J
) )  i^i  ~P z )  C_  ~P z
1817, 13sseldi 3601 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  (
z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  ->  w  e.  ~P z )
19 elpwi 4168 . . . . . 6  |-  ( w  e.  ~P z  ->  w  C_  z )
20 imass2 5501 . . . . . 6  |-  ( w 
C_  z  ->  ( `' F " w ) 
C_  ( `' F " z ) )
2118, 19, 203syl 18 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  (
z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  ->  ( `' F " w )  C_  ( `' F " z ) )
22 nrmsep3 21159 . . . . 5  |-  ( ( J  e.  Nrm  /\  ( ( `' F " z )  e.  J  /\  ( `' F "
w )  e.  (
Clsd `  J )  /\  ( `' F "
w )  C_  ( `' F " z ) ) )  ->  E. u  e.  J  ( ( `' F " w ) 
C_  u  /\  (
( cls `  J
) `  u )  C_  ( `' F "
z ) ) )
236, 11, 16, 21, 22syl13anc 1328 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  (
z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  ->  E. u  e.  J  ( ( `' F " w ) 
C_  u  /\  (
( cls `  J
) `  u )  C_  ( `' F "
z ) ) )
24 simplll 798 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  J  e.  (TopOn `  X ) )
25 simprl 794 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  u  e.  J )
261kqopn 21537 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  u  e.  J )  ->  ( F " u )  e.  (KQ `  J ) )
2724, 25, 26syl2anc 693 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  ( F " u )  e.  (KQ
`  J ) )
28 simprrl 804 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  ( `' F " w )  C_  u )
291kqffn 21528 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  F  Fn  X )
30 fnfun 5988 . . . . . . . 8  |-  ( F  Fn  X  ->  Fun  F )
3124, 29, 303syl 18 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  Fun  F )
3214adantr 481 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  w  e.  ( Clsd `  (KQ `  J
) ) )
33 eqid 2622 . . . . . . . . . 10  |-  U. (KQ `  J )  =  U. (KQ `  J )
3433cldss 20833 . . . . . . . . 9  |-  ( w  e.  ( Clsd `  (KQ `  J ) )  ->  w  C_  U. (KQ `  J ) )
3532, 34syl 17 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  w  C_  U. (KQ `  J ) )
36 toponuni 20719 . . . . . . . . 9  |-  ( (KQ
`  J )  e.  (TopOn `  ran  F )  ->  ran  F  =  U. (KQ `  J ) )
3724, 2, 363syl 18 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  ran  F  = 
U. (KQ `  J
) )
3835, 37sseqtr4d 3642 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  w  C_  ran  F )
39 funimass1 5971 . . . . . . 7  |-  ( ( Fun  F  /\  w  C_ 
ran  F )  -> 
( ( `' F " w )  C_  u  ->  w  C_  ( F " u ) ) )
4031, 38, 39syl2anc 693 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  ( ( `' F " w ) 
C_  u  ->  w  C_  ( F " u
) ) )
4128, 40mpd 15 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  w  C_  ( F " u ) )
42 topontop 20718 . . . . . . . . . 10  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
4324, 42syl 17 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  J  e.  Top )
44 elssuni 4467 . . . . . . . . . 10  |-  ( u  e.  J  ->  u  C_ 
U. J )
4544ad2antrl 764 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  u  C_  U. J
)
46 eqid 2622 . . . . . . . . . 10  |-  U. J  =  U. J
4746clscld 20851 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  u  C_  U. J )  ->  ( ( cls `  J ) `  u
)  e.  ( Clsd `  J ) )
4843, 45, 47syl2anc 693 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  ( ( cls `  J ) `  u )  e.  (
Clsd `  J )
)
491kqcld 21538 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  (
( cls `  J
) `  u )  e.  ( Clsd `  J
) )  ->  ( F " ( ( cls `  J ) `  u
) )  e.  (
Clsd `  (KQ `  J
) ) )
5024, 48, 49syl2anc 693 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  ( F " ( ( cls `  J
) `  u )
)  e.  ( Clsd `  (KQ `  J ) ) )
5146sscls 20860 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  u  C_  U. J )  ->  u  C_  (
( cls `  J
) `  u )
)
5243, 45, 51syl2anc 693 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  u  C_  (
( cls `  J
) `  u )
)
53 imass2 5501 . . . . . . . 8  |-  ( u 
C_  ( ( cls `  J ) `  u
)  ->  ( F " u )  C_  ( F " ( ( cls `  J ) `  u
) ) )
5452, 53syl 17 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  ( F " u )  C_  ( F " ( ( cls `  J ) `  u
) ) )
5533clsss2 20876 . . . . . . 7  |-  ( ( ( F " (
( cls `  J
) `  u )
)  e.  ( Clsd `  (KQ `  J ) )  /\  ( F
" u )  C_  ( F " ( ( cls `  J ) `
 u ) ) )  ->  ( ( cls `  (KQ `  J
) ) `  ( F " u ) ) 
C_  ( F "
( ( cls `  J
) `  u )
) )
5650, 54, 55syl2anc 693 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  ( ( cls `  (KQ `  J
) ) `  ( F " u ) ) 
C_  ( F "
( ( cls `  J
) `  u )
) )
57 simprrr 805 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  ( ( cls `  J ) `  u )  C_  ( `' F " z ) )
5846clsss3 20863 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  u  C_  U. J )  ->  ( ( cls `  J ) `  u
)  C_  U. J )
5943, 45, 58syl2anc 693 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  ( ( cls `  J ) `  u )  C_  U. J
)
60 fndm 5990 . . . . . . . . . . 11  |-  ( F  Fn  X  ->  dom  F  =  X )
6124, 29, 603syl 18 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  dom  F  =  X )
62 toponuni 20719 . . . . . . . . . . 11  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
6324, 62syl 17 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  X  =  U. J )
6461, 63eqtrd 2656 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  dom  F  = 
U. J )
6559, 64sseqtr4d 3642 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  ( ( cls `  J ) `  u )  C_  dom  F )
66 funimass3 6333 . . . . . . . 8  |-  ( ( Fun  F  /\  (
( cls `  J
) `  u )  C_ 
dom  F )  -> 
( ( F "
( ( cls `  J
) `  u )
)  C_  z  <->  ( ( cls `  J ) `  u )  C_  ( `' F " z ) ) )
6731, 65, 66syl2anc 693 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  ( ( F " ( ( cls `  J ) `  u
) )  C_  z  <->  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) )
6857, 67mpbird 247 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  ( F " ( ( cls `  J
) `  u )
)  C_  z )
6956, 68sstrd 3613 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  ( ( cls `  (KQ `  J
) ) `  ( F " u ) ) 
C_  z )
70 sseq2 3627 . . . . . . 7  |-  ( m  =  ( F "
u )  ->  (
w  C_  m  <->  w  C_  ( F " u ) ) )
71 fveq2 6191 . . . . . . . 8  |-  ( m  =  ( F "
u )  ->  (
( cls `  (KQ `  J ) ) `  m )  =  ( ( cls `  (KQ `  J ) ) `  ( F " u ) ) )
7271sseq1d 3632 . . . . . . 7  |-  ( m  =  ( F "
u )  ->  (
( ( cls `  (KQ `  J ) ) `  m )  C_  z  <->  ( ( cls `  (KQ `  J ) ) `  ( F " u ) )  C_  z )
)
7370, 72anbi12d 747 . . . . . 6  |-  ( m  =  ( F "
u )  ->  (
( w  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m )  C_  z
)  <->  ( w  C_  ( F " u )  /\  ( ( cls `  (KQ `  J ) ) `  ( F
" u ) ) 
C_  z ) ) )
7473rspcev 3309 . . . . 5  |-  ( ( ( F " u
)  e.  (KQ `  J )  /\  (
w  C_  ( F " u )  /\  (
( cls `  (KQ `  J ) ) `  ( F " u ) )  C_  z )
)  ->  E. m  e.  (KQ `  J ) ( w  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m )  C_  z
) )
7527, 41, 69, 74syl12anc 1324 . . . 4  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  ( z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  /\  ( u  e.  J  /\  (
( `' F "
w )  C_  u  /\  ( ( cls `  J
) `  u )  C_  ( `' F "
z ) ) ) )  ->  E. m  e.  (KQ `  J ) ( w  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m )  C_  z
) )
7623, 75rexlimddv 3035 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  /\  (
z  e.  (KQ `  J )  /\  w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) ) )  ->  E. m  e.  (KQ `  J ) ( w  C_  m  /\  ( ( cls `  (KQ `  J ) ) `  m )  C_  z
) )
7776ralrimivva 2971 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  ->  A. z  e.  (KQ `  J ) A. w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) E. m  e.  (KQ `  J ) ( w 
C_  m  /\  (
( cls `  (KQ `  J ) ) `  m )  C_  z
) )
78 isnrm 21139 . 2  |-  ( (KQ
`  J )  e. 
Nrm 
<->  ( (KQ `  J
)  e.  Top  /\  A. z  e.  (KQ `  J ) A. w  e.  ( ( Clsd `  (KQ `  J ) )  i^i 
~P z ) E. m  e.  (KQ `  J ) ( w 
C_  m  /\  (
( cls `  (KQ `  J ) ) `  m )  C_  z
) ) )
795, 77, 78sylanbrc 698 1  |-  ( ( J  e.  (TopOn `  X )  /\  J  e.  Nrm )  ->  (KQ `  J )  e.  Nrm )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   U.cuni 4436    |-> cmpt 4729   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117   Fun wfun 5882    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   Topctop 20698  TopOnctopon 20715   Clsdccld 20820   clsccl 20822    Cn ccn 21028   Nrmcnrm 21114  KQckq 21496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-qtop 16167  df-top 20699  df-topon 20716  df-cld 20823  df-cls 20825  df-cn 21031  df-nrm 21121  df-kq 21497
This theorem is referenced by:  kqnrm  21555
  Copyright terms: Public domain W3C validator