MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrmsep3 Structured version   Visualization version   Unicode version

Theorem nrmsep3 21159
Description: In a normal space, given a closed set  B inside an open set  A, there is an open set  x such that  B  C_  x  C_  cls ( x )  C_  A. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
nrmsep3  |-  ( ( J  e.  Nrm  /\  ( A  e.  J  /\  B  e.  ( Clsd `  J )  /\  B  C_  A ) )  ->  E. x  e.  J  ( B  C_  x  /\  ( ( cls `  J
) `  x )  C_  A ) )
Distinct variable groups:    x, A    x, B    x, J

Proof of Theorem nrmsep3
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isnrm 21139 . . . . 5  |-  ( J  e.  Nrm  <->  ( J  e.  Top  /\  A. y  e.  J  A. z  e.  ( ( Clsd `  J
)  i^i  ~P y
) E. x  e.  J  ( z  C_  x  /\  ( ( cls `  J ) `  x
)  C_  y )
) )
2 pweq 4161 . . . . . . . 8  |-  ( y  =  A  ->  ~P y  =  ~P A
)
32ineq2d 3814 . . . . . . 7  |-  ( y  =  A  ->  (
( Clsd `  J )  i^i  ~P y )  =  ( ( Clsd `  J
)  i^i  ~P A
) )
4 sseq2 3627 . . . . . . . . 9  |-  ( y  =  A  ->  (
( ( cls `  J
) `  x )  C_  y  <->  ( ( cls `  J ) `  x
)  C_  A )
)
54anbi2d 740 . . . . . . . 8  |-  ( y  =  A  ->  (
( z  C_  x  /\  ( ( cls `  J
) `  x )  C_  y )  <->  ( z  C_  x  /\  ( ( cls `  J ) `
 x )  C_  A ) ) )
65rexbidv 3052 . . . . . . 7  |-  ( y  =  A  ->  ( E. x  e.  J  ( z  C_  x  /\  ( ( cls `  J
) `  x )  C_  y )  <->  E. x  e.  J  ( z  C_  x  /\  ( ( cls `  J ) `
 x )  C_  A ) ) )
73, 6raleqbidv 3152 . . . . . 6  |-  ( y  =  A  ->  ( A. z  e.  (
( Clsd `  J )  i^i  ~P y ) E. x  e.  J  ( z  C_  x  /\  ( ( cls `  J
) `  x )  C_  y )  <->  A. z  e.  ( ( Clsd `  J
)  i^i  ~P A
) E. x  e.  J  ( z  C_  x  /\  ( ( cls `  J ) `  x
)  C_  A )
) )
87rspccv 3306 . . . . 5  |-  ( A. y  e.  J  A. z  e.  ( ( Clsd `  J )  i^i 
~P y ) E. x  e.  J  ( z  C_  x  /\  ( ( cls `  J
) `  x )  C_  y )  ->  ( A  e.  J  ->  A. z  e.  ( (
Clsd `  J )  i^i  ~P A ) E. x  e.  J  ( z  C_  x  /\  ( ( cls `  J
) `  x )  C_  A ) ) )
91, 8simplbiim 659 . . . 4  |-  ( J  e.  Nrm  ->  ( A  e.  J  ->  A. z  e.  ( (
Clsd `  J )  i^i  ~P A ) E. x  e.  J  ( z  C_  x  /\  ( ( cls `  J
) `  x )  C_  A ) ) )
10 elin 3796 . . . . . 6  |-  ( B  e.  ( ( Clsd `  J )  i^i  ~P A )  <->  ( B  e.  ( Clsd `  J
)  /\  B  e.  ~P A ) )
11 elpwg 4166 . . . . . . 7  |-  ( B  e.  ( Clsd `  J
)  ->  ( B  e.  ~P A  <->  B  C_  A
) )
1211pm5.32i 669 . . . . . 6  |-  ( ( B  e.  ( Clsd `  J )  /\  B  e.  ~P A )  <->  ( B  e.  ( Clsd `  J
)  /\  B  C_  A
) )
1310, 12bitri 264 . . . . 5  |-  ( B  e.  ( ( Clsd `  J )  i^i  ~P A )  <->  ( B  e.  ( Clsd `  J
)  /\  B  C_  A
) )
14 cleq1lem 13721 . . . . . . 7  |-  ( z  =  B  ->  (
( z  C_  x  /\  ( ( cls `  J
) `  x )  C_  A )  <->  ( B  C_  x  /\  ( ( cls `  J ) `
 x )  C_  A ) ) )
1514rexbidv 3052 . . . . . 6  |-  ( z  =  B  ->  ( E. x  e.  J  ( z  C_  x  /\  ( ( cls `  J
) `  x )  C_  A )  <->  E. x  e.  J  ( B  C_  x  /\  ( ( cls `  J ) `
 x )  C_  A ) ) )
1615rspccv 3306 . . . . 5  |-  ( A. z  e.  ( ( Clsd `  J )  i^i 
~P A ) E. x  e.  J  ( z  C_  x  /\  ( ( cls `  J
) `  x )  C_  A )  ->  ( B  e.  ( ( Clsd `  J )  i^i 
~P A )  ->  E. x  e.  J  ( B  C_  x  /\  ( ( cls `  J
) `  x )  C_  A ) ) )
1713, 16syl5bir 233 . . . 4  |-  ( A. z  e.  ( ( Clsd `  J )  i^i 
~P A ) E. x  e.  J  ( z  C_  x  /\  ( ( cls `  J
) `  x )  C_  A )  ->  (
( B  e.  (
Clsd `  J )  /\  B  C_  A )  ->  E. x  e.  J  ( B  C_  x  /\  ( ( cls `  J
) `  x )  C_  A ) ) )
189, 17syl6 35 . . 3  |-  ( J  e.  Nrm  ->  ( A  e.  J  ->  ( ( B  e.  (
Clsd `  J )  /\  B  C_  A )  ->  E. x  e.  J  ( B  C_  x  /\  ( ( cls `  J
) `  x )  C_  A ) ) ) )
1918exp4a 633 . 2  |-  ( J  e.  Nrm  ->  ( A  e.  J  ->  ( B  e.  ( Clsd `  J )  ->  ( B  C_  A  ->  E. x  e.  J  ( B  C_  x  /\  ( ( cls `  J ) `
 x )  C_  A ) ) ) ) )
20193imp2 1282 1  |-  ( ( J  e.  Nrm  /\  ( A  e.  J  /\  B  e.  ( Clsd `  J )  /\  B  C_  A ) )  ->  E. x  e.  J  ( B  C_  x  /\  ( ( cls `  J
) `  x )  C_  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   ` cfv 5888   Topctop 20698   Clsdccld 20820   clsccl 20822   Nrmcnrm 21114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-nrm 21121
This theorem is referenced by:  nrmsep2  21160  kqnrmlem1  21546  kqnrmlem2  21547  nrmr0reg  21552  nrmhmph  21597
  Copyright terms: Public domain W3C validator